Redox control of protein function involves oxidation and reduction of amino acid residues, but the mechanisms and regulators involved are insufficiently understood. Here, we report that in conjunction with Mical proteins, methionine-R-sulfoxide reductase B1 (MsrB1) regulates mammalian actin assembly via stereoselective methionine oxidation and reduction in a reversible, site-specific manner. Two methionine residues in actin are specifically converted to methionine-R-sulfoxide by Mical1 and Mical2 and reduced back to methionine by selenoprotein MsrB1, supporting actin disassembly and assembly, respectively. Macrophages utilize this redox control during cellular activation by stimulating MsrB1 expression and activity as a part of innate immunity. We identified the regulatory role of MsrB1 as a Mical antagonist in orchestrating actin dynamics and macrophage function. More generally, our study shows that proteins can be regulated by reversible site-specific methionine-R-sulfoxidation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262529PMC
http://dx.doi.org/10.1016/j.molcel.2013.06.019DOI Listing

Publication Analysis

Top Keywords

actin assembly
8
macrophage function
8
stereoselective methionine
8
methionine oxidation
8
redox control
8
oxidation reduction
8
reversible site-specific
8
msrb1
5
actin
5
msrb1 micals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!