Multi-walled carbon nanotubes (MWCNTs), nano-graphene platelets (NGPs), and superfine powdered activated carbon (S-PAC) were comparatively evaluated for their applicability as adsorptive coatings on microfiltration membranes. The objective was to determine which materials were capable of contaminant removal while causing minimal flux reduction. Methylene blue and atrazine were the model contaminants. When applied as membrane coatings, MWCNTs had minimal retention capabilities for the model contaminants, and S-PAC had the fastest removal. The membrane coating approach was also compared with a stirred vessel configuration, in which the adsorbent was added to a stirred flask preceding the membrane cell. Direct application of the adsorbent to the membrane constituted a greater initial reduction in permeate concentrations of the model contaminants than with the stirred flask setup. All adsorbents except S-PAC showed flux reductions less than 5% after application as thin-layer membrane coatings, and flux recovery after membrane backwashing was greater than 90% for all materials and masses tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2013.07.009 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman.
Assessing groundwater contamination risk is a critical aspect of preventing and managing groundwater pollution. There was a research gap in the investigation of uncertainties in modeling groundwater contamination risks in aquifers. This study addresses this gap using Bayesian Model Averaging (BMA), with a novel focus on risk exposures from geogenic contaminants, such as lead (Pb).
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Botany, Bacha Khan University, Charsadda, Charsadda, 24420, Khyber Pakhtunkhwa, Pakistan.
Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.
View Article and Find Full Text PDFJ Public Health Manag Pract
January 2025
Department of Environmental Medicine and Public Health (Mr Bland, Dr Zajac, Ms Guel, Dr Pendley, Dr Galvez, Dr Sheffield), Icahn School of Medicine at Mount Sinai, New York, New York; Harvard Kenneth C. Griffin Graduate School of Arts and Sciences (Mr Wilson), Boston, Massachusetts; Environmental Research and Translation for Health (EaRTH) Center (Ms Charlesworth), University of California, San Francisco, California; Community Engagement Core, Environmental Health Sciences Center at Department of Environmental Medicine (Dr Korfmacher), University of Rochester Medical Center, Rochester, New York; Pediatric Environmental Health and Cincinnati Children's Hospital Medical Center (Dr Newman), Cincinnati, Ohio; Philadelphia Regional Center for Children's Environmental Health, Center of Excellence in Environmental Toxicology, Perelman School of Medicine (Dr Howarth), University of Pennsylvania, Philadelphia, Pennsylvania; and Division of Academic General Pediatrics, Children's Hospital at Montefiore (Dr Balk), Albert Einstein College of Medicine, Bronx, New York.
The integration of environmental health (EH) into routine clinical care for children is in its early stages. The vision of pediatric EH is that all clinicians caring for children are aware of and able to help connect families to needed resources to reduce harmful environmental exposures and increase health-enhancing ones. Environmental exposures include air pollution, substandard housing, lead, mercury, pesticides, consumer products chemicals, drinking water contaminants, industrial facility emissions and, increasingly, climate change-related extreme weather and heat events.
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
Background: Leptospirosis is a neglected zoonosis transmitted through urine of infected hosts or contaminated environments. The transmission of bacteria between humans, animals, and the environment underscores the necessity of a One Health approach.
Methods: We conducted a systematic review to identify significant findings and challenges in One Health research on leptospirosis, focusing on studies involving sampling in ≥2 of the 3 compartments: human, animal, and environment.
Environ Toxicol Chem
January 2025
Environmental Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
The leakage and accumulation of plastic in the environment is a significant and growing problem with numerous detrimental impacts and has led to a push toward the design and development of more environmentally benign materials. To this end we have developed a quantum chemistry (QC) based model for predicting the mobility of polymer materials from molecular structure. Hydrophobicity is used as a surrogate for mobility given that hydrophobic interactions drive much of the partitioning of contaminants in and out of various environmentally relevant compartments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!