Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
SRpf, culture supernatants from Micrococcus luteus containing the resuscitation-promoting factor (Rpf), was used to enhance the biphenyl-degrading capability of potential microorganisms. The obtained results suggest that the enrichment culture produced by the addition of SRpf (enrichment culture treatment group, ECT) enhanced the biphenyl degradation efficiency, cell growth and bacterial diversity significantly. Biphenyl at concentration of 1500 mg/L was almost completely degraded in 24 h using SRpf at a dosage of 15% (v/v). Six strains unique to the ECT were isolated in pure cultures. This study provides a new insight into bacterial degradation of biphenyl for PCBs-bioremediation, and could be developed as a novel efficient method for obtaining highly desirable pollutant-degrading microorganisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2013.07.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!