A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites. | LitMetric

A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites.

Bioresour Technol

Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Published: October 2013

SRpf, culture supernatants from Micrococcus luteus containing the resuscitation-promoting factor (Rpf), was used to enhance the biphenyl-degrading capability of potential microorganisms. The obtained results suggest that the enrichment culture produced by the addition of SRpf (enrichment culture treatment group, ECT) enhanced the biphenyl degradation efficiency, cell growth and bacterial diversity significantly. Biphenyl at concentration of 1500 mg/L was almost completely degraded in 24 h using SRpf at a dosage of 15% (v/v). Six strains unique to the ECT were isolated in pure cultures. This study provides a new insight into bacterial degradation of biphenyl for PCBs-bioremediation, and could be developed as a novel efficient method for obtaining highly desirable pollutant-degrading microorganisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.07.028DOI Listing

Publication Analysis

Top Keywords

enrichment culture
8
novel approach
4
approach stimulate
4
stimulate biphenyl-degrading
4
biphenyl-degrading potential
4
potential bacterial
4
bacterial community
4
community pcbs-contaminated
4
pcbs-contaminated soil
4
soil e-waste
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!