The kinase family is one of the largest target families in the human genome. The family's key function in signal transduction for all organisms makes it a very attractive target class for the therapeutic interventions in many diseases states such as cancer, diabetes, inflammation and arthritis. A first step toward accelerating kinase drug discovery process is to fast identify whether a chemical and a kinase interact or not. Experimentally, these interactions can be identified by in vitro binding assay - an expensive and laborious procedure that is not applicable on a large scale. Therefore, there is an urgent need to develop statistically efficient approaches for identifying kinase-inhibitor interactions. For the first time, the quantitative binding affinities of kinase-inhibitor pairs are differentiated as a measurement to define if an inhibitor interacts with a kinase, and then a chemogenomics framework using an unbiased set of general integrated features (drug descriptors and protein descriptors) and random forest (RF) is employed to construct a predictive model which can accurately classify kinase-inhibitor pairs. Our results show that RF with integrated features gave prediction accuracy of 93.76%, sensitivity of 92.26%, and specificity of 95.27%, respectively. The results are superior to those by only considering two separated spaces (chemical space and protein space), demonstrating that these integrated features contribute cooperatively. Based on the constructed model, we provided a high confidence list of drug-target associations for subsequent experimental investigation guidance at a low false discovery rate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2013.07.003DOI Listing

Publication Analysis

Top Keywords

integrated features
12
kinase-inhibitor interactions
8
kinase-inhibitor pairs
8
large-scale prediction
4
prediction human
4
kinase-inhibitor
4
human kinase-inhibitor
4
interactions protein
4
protein sequences
4
sequences molecular
4

Similar Publications

Recent evidence suggests that ketone bodies have therapeutic potential in many cardiovascular diseases including heart failure (HF). Accordingly, this has led to multiple clinical trials that use ketone esters to treat HF patients, which we term ketone therapy. Ketone esters, specifically ketone monoesters, are synthetic compounds which, when consumed, are de-esterified into two β-hydroxybutyrate (βOHB) molecules and increase the circulating βOHB concentration.

View Article and Find Full Text PDF

The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.

View Article and Find Full Text PDF

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research.

View Article and Find Full Text PDF

Background: Educational innovation in health professional education is needed to keep up with rapidly changing healthcare systems and societal needs. This study evaluates the implementation of PACE, an innovative curriculum designed by the physiotherapy department of the HAN University of Applied Sciences in The Netherlands. The PACE concept features an integrated approach to learning and assessment based on pre-set learning outcomes, personalized learning goals, flexible learning routes, and programmatic assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!