To improve diagnosis and understanding of the risk of rupture of atherosclerotic plaque, new strategies to realistically determine mechanical properties of atherosclerotic plaque need to be developed. In this study, an in vitro experimental method is proposed for accurate 3-D assessment of (diseased) vessel geometry using ultrasound. The method was applied to a vascular phantom, a healthy porcine carotid artery and human carotid endarterectomy specimens (n = 6). Vessel segments were pressure fixed and rotated in 10 ° steps. Longitudinal cross sections were imaged over 360 °. Findings were validated using micro-computed tomography (μCT). Results show good agreement between ultrasound and μCT-based geometries of the different segment types (ISI phantom = 0.94, ISI healthy = 0.79, ISI diseased = 0.75-0.80). The method does not suffer from acoustic shadowing effects present when imaging stenotic segments and allows future dynamic measurements to determine mechanical properties of atherosclerotic plaque in an in vitro setting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2013.03.019DOI Listing

Publication Analysis

Top Keywords

atherosclerotic plaque
12
determine mechanical
8
mechanical properties
8
properties atherosclerotic
8
novel experimental
4
experimental approach
4
approach three-dimensional
4
three-dimensional geometry
4
geometry assessment
4
assessment calcified
4

Similar Publications

Background: Neovascularisation of carotid plaques contributes to their vulnerability. Current imaging methods such as contrast-enhanced ultrasound (CEUS) usually lack the required spatial resolution and quantification capability for precise neovessels identification. We aimed at quantifying plaque vascularisation with ultrasound localization microscopy (ULM) and compared the results to histological analysis.

View Article and Find Full Text PDF

Advanced Imaging Techniques for Atherosclerosis and Cardiovascular Calcification in Animal Models.

J Cardiovasc Dev Dis

December 2024

Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA.

The detection and assessment of atherosclerosis and cardiovascular calcification can inform risk stratification and therapies to reduce cardiovascular morbidity and mortality. In this review, we provide an overview of current and emerging imaging techniques for assessing atherosclerosis and cardiovascular calcification in animal models. Traditional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), offer non-invasive approaches of visualizing atherosclerotic calcification in vivo; integration of these techniques with positron emission tomography (PET) imaging adds molecular imaging capabilities, such as detection of metabolically active microcalcifications with F-sodium fluoride.

View Article and Find Full Text PDF

Background: Atherosclerosis is a lipid-driven inflammatory disease characterized by plaque formation in major arteries. These plaques contain lipid-rich macrophages that accumulate through monocyte recruitment, local macrophage differentiation, and proliferation.

Objective: We identify the macrophage subsets that are closely related to atherosclerosis and reveal the key pathways in the progression of atherosclerotic disease.

View Article and Find Full Text PDF

Melatonin stabilizes atherosclerotic plaques: an association that should be clinically exploited.

Front Med (Lausanne)

December 2024

CENECON, Faculty of Medical Sciences, Universidad de Buenos Aires, and Pontificia Universidad Catolica Argentina, Buenos Aires, Argentina.

Atherosclerosis is the underlying factor in the premature death of millions of humans annually. The cause of death is often a result of the rupture of an atherosclerotic plaque followed by the discharge of the associated molecular debris into the vessel lumen which occludes the artery leading to ischemia of downstream tissue and to morbidity or mortality of the individual. This is most serious when it occurs in the heart (heart attack) or brain (stroke).

View Article and Find Full Text PDF

Introduction: The involvement of thyroid hormone in cardiovascular disease remains debated. The aim of our research was to ascertain whether thyroid hormone sensitivity indices are related to carotid plaque (CAP) risk in the general population.

Methods: We recruited 5,360 participants for health examinations to explore the correlation between thyroid hormone sensitivity indices and CAP risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!