Whole cell tumor vaccine (WCTV), as a potential treatment modality, elicits limited immune responses because of the poor immunogenicity. To address this issue, researchers have attempted to transduce a cytokine adjuvant into tumor cells, but these single-adjuvant WCTVs curtail the high expectations. In present study, we constructed a multi-adjuvant WCTV based on the nanoparticles modified with cell penetrating peptide, which could facilitate the transportation of granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin 2 (IL-2) into tumor cells. After inactivation, as-designed multi-adjuvant WCTV exhibited programmed promotions on DC recruitment, antigen presentation, and T-cell activation. In vivo evaluations demonstrated the satisfactory effects on tumor growth suppression, metastasis inhibition, and recurrence prevention. Therefore, the nanoparticles-based multi-adjuvant WCTV may serve as a high-performance treatment for anti-tumor immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2013.07.020 | DOI Listing |
Biomaterials
November 2013
National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
Whole cell tumor vaccine (WCTV), as a potential treatment modality, elicits limited immune responses because of the poor immunogenicity. To address this issue, researchers have attempted to transduce a cytokine adjuvant into tumor cells, but these single-adjuvant WCTVs curtail the high expectations. In present study, we constructed a multi-adjuvant WCTV based on the nanoparticles modified with cell penetrating peptide, which could facilitate the transportation of granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin 2 (IL-2) into tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!