The mechanical and tribological properties of a novel biomaterial, a boundary lubricant functionalized hydrogel, were investigated and compared to natural cartilage tissue. This low friction hydrogel material was developed for use as a synthetic replacement for focal defects in articular cartilage. The hydrogel was made by functionalizing the biocompatible polymer polyvinyl alcohol with a carboxylic acid derivative boundary lubricant molecule. Two different gel processing techniques were used to create the hydrogels. The first method consisted of initially functionalizing the boundary lubricant to the polyvinyl alcohol and then creating hydrogels by physically crosslinking the reacted polymer. The second method consisted of creating non-functionalized polyvinyl alcohol hydrogels and then performing the functionalization reaction on the fully formed gel. Osteochondral bovine samples were collected and replicate experiments were conducted to compare the mechanical and tribological performance of the boundary lubricant functionalized hydrogels to non-functionalized hydrogels and native cartilage. Friction experiments displayed a maximum decrease in friction coefficient of 70% for the functionalized hydrogels compared to neat polyvinyl alcohol. Indentation investigated the elastic modulus of the hydrogels, demonstrating that stability of the hydrogel was affected by processing method. Hydrogel performance was within the lower ranges of natural cartilage tested under the exact same conditions, showing the potential of the boundary lubricant functionalized hydrogels to perform as a biomimetic synthetic articular cartilage replacement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2013.06.035 | DOI Listing |
Langmuir
January 2025
R&D - Analytical Science Research, Kao Corporation, 1334 minato, Wakayama, Wakayama 640-8580, Japan.
The adsorption behavior of an anionic surfactant, hydroxy alkane sulfonate with an alkyl chain length of 18 (C18HAS), from its hard water solution onto a mica surface and resulting lubrication properties were investigated. Because of the double chain-like chemical structure and aggregation behavior, C18HAS formed vesicles in hard water, which adsorbed onto a negatively charged mica surface via cation (Ca) bridging and then transformed into a bilayer film. The number of bilayers formed on the surface was evaluated by force curve measurements using an atomic force microscope (AFM), and the results showed a time-dependent increase of the number of adsorbed bilayers.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Department of Food Science and Biotechnology, Dongguk University-Seoul, Gyeonggi 10326, Korea.
This study investigated the rheological and tribological properties of cold beverages [bottled water (BW), sports drink (SD), orange juice (OJ), and whole milk (WM)] thickened with various concentrations (1%, 2%, and 3%, w/w) of xanthan gum-based food thickeners. All thickened beverages exhibited high pseudoplastic behavior, with increasing thickener concentration leading to higher viscosity and viscoelastic moduli and a lower flow behavior index. Thickened BW, SD, and WM exhibited typical Stribeck curves covering the boundary, mixed, and hydrodynamic lubrication regimes.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Economics and Management, Fuzhou University, Fuzhou, China. Electronic address:
With the global population projected to reach 9.7 billion by 2050, pressure on global natural resources will increase by 50-90%, exceeding planetary boundaries. Industry 4.
View Article and Find Full Text PDFSci Rep
December 2024
School of architecture, Ocean and energy power engineering, Wuhan University of Technology, Wuhan, 430070, China.
During maritime operations, extreme events such as explosions, grounding, and seal failures can cause water ingress into lubricant compartments, forming oil-water emulsions that significantly affect the lubrication performance of ship stern bearings. Existing studies mainly focus on low water content, with limited exploration of the impact of high water content on lubrication performance. To address this gap, viscosity measurements of oil-water mixtures were conducted, and an emulsification viscosity equation applicable to varying water contents was derived.
View Article and Find Full Text PDFJ Mol Model
December 2024
School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
Context: This study employs molecular dynamics simulations to investigate the nanoscale tribological behavior of a single transverse grain boundary in a nickel-based polycrystalline alloy. A series of simulations were conducted using a repetitive rotational friction method to explore the mechanisms by which different grain boundary positions influence variations in wear depth, friction force, friction coefficient, dislocation, stress, and internal damage during repeated friction processes. The results reveal that the grain boundary structure enhances the strength of the nanoscale nickel-based polycrystalline alloy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!