Foraging behavior of the dead leaf butterfly, Kallima inachus.

J Insect Sci

Key Laboratory of Cultivation and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, China.

Published: March 2014

The behavioral responses of foraging adults of Kallima inachus (Boisduval) (Lepidoptera: Nymphalidae) to four colors and to six different fermented fruit juices were observed in order to determine the cues used by foraging adults. According to the results, adults did not show a behavioral response to red, yellow, purple, or white artificial flowers without food odors, but flowers with the fermented pear juice strongly attracted them, and they showed a behavioral response to fermented juices of the six fruits (pear, apple, banana, watermelon, orange, and persimmon) with no statistically significant preference. The fruit volatiles were collected using dynamic headspace adsorption, and the volatile components were analyzed by auto thermal-desorption gas chromatography-mass spectrometry to assess which volatiles existed in the fruits. Only alcohols, esters, and ketones were common in the volatiles of all six fermenting fruits. The five volatile components found in the six fruits, as well as two others found to be in other fermented foods by previous studies, were selected to test the behavioral and electroantennogram (EAG) responses of naive adults to estimate behavioral preference and antennal perception. In field behavioral tests, alcohols were the most attractive, followed by esters, while α-pinene, butanone, and acetic acid were much less attractive. Relative to other volatile combinations and ethanol alone, the mixture of ethyl acetate and ethanol attracted the most feeding adults. The number of adults attracted was significantly positively correlated with the concentration of both ethanol and ethyl acetate. The EAG responses of naive adults showed that the EAG responses to 3-methyl-1-butanol, isoamyl acetate, ethyl acetate, α-pinene, butanone, and acetic acid were all higher than those to ethanol (100%) at doses of either 5 µl/mL or 50 µl/mL. Sexual differences only existed in 3-methyl-1-butanol and acetic acid at particular concentrations. Sexual differences in response to chemical mixtures were not significant at 50 µl/mL. In addition, the EAG responses in the within-sex trials were not correlated to the dosage (0.01, 0.1, 1, 5, 10, and µl/mL) of either ethanol or ethyl acetate. The results showed that olfactory cues played a crucial role in the foraging of adult K. inachus, and that foraging adults can use a variety of chemical signals derived from food; however, the feeding preference to volatiles was not necessary correlated with the EAG responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740915PMC
http://dx.doi.org/10.1673/031.013.5801DOI Listing

Publication Analysis

Top Keywords

eag responses
20
ethyl acetate
16
foraging adults
12
acetic acid
12
kallima inachus
8
adults
8
behavioral response
8
volatile components
8
responses naive
8
naive adults
8

Similar Publications

Background: Low-dose amitriptyline, a tricyclic antidepressant (TCA), was superior to placebo for irritable bowel syndrome (IBS) in the AmitripTyline at Low-dose ANd Titrated for Irritable bowel syndrome as Second-line treatment (ATLANTIS) trial.

Objective: To perform post hoc analyses of ATLANTIS for predictors of response to, and tolerability of, a TCA.

Design: ATLANTIS randomised 463 adults with IBS to amitriptyline (232) or placebo (231).

View Article and Find Full Text PDF

High Antennal Expression of and Participate in the Recognition of Alarm Pheromones by Buren.

Insects

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Insects have highly developed olfactory systems in which cytochrome P450s (CYPs) were involved as odor-degrading enzymes throughout the olfactory recognition of odor compounds by insects to avoid continuous stimulation of signaling molecules and thus damage to the olfactory nervous. To understand whether the highly expressed CYPs in the antennae play an olfactory function in worker, in this study, we find six highly expressed antennal CYPs from the transcriptome of . Multiple sequence alignment and phylogenetic analysis divided them into two families: the CYP3 family (, ) and the CYP4 family (, , , ).

View Article and Find Full Text PDF

The olfactory sensory system plays vital roles in daily activities, such as locating mate partners, foraging, and risk avoidance. Natural enemies can locate their prey through characteristic volatiles. However, little is known about whether prey can recognize the volatiles of their predators and if this recognition can increase the efficiency of prey escaping from predators.

View Article and Find Full Text PDF

The pheromones of crane flies (Tipulidae), one of the largest families within the order Diptera (over 15,000 species), are unknown. The aim of our study was to identify the chemical compounds involved in communication in , a representative species of the family. Female cuticular washes were found to be attractive to males in a bioassay.

View Article and Find Full Text PDF

Varroa Volatiles Offer Chemical Cues to Honey Bees for Initial Parasitic Recognition.

Biomolecules

January 2025

Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.

Olfaction mediated by the antennae is a vital sensory modality for arthropods and could be applied as a tool in pest control. The ectoparasitic mite poses a significant threat to the health of the honey bee worldwide and has garnered global attention. To better understand the chemical ecology of this host-parasite relationship, we collected and characterized the volatile organic compounds (VOCs) from and used electroantennography (EAG) to record the responses of honey bee ( and ) antennae to the different VOCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!