In this Letter, we report a measurement of the He-McKellar-Wilkens (HMW) topological phase by atom interferometry. The experiment is done with our lithium atom interferometer, and in order to suppress the stray effects present in our first experiment, we use optical pumping of the (7)Li atoms in their F=2, m(F)=+2 (or -2) ground state sublevel. In these conditions, the measured phase shift is the sum of the HMW phase and of the Aharonov-Casher phase, which are separated due to their different m(F) dependence. The HMW phase has been measured for different lithium beam velocities and the results are in very good agreement with a phase independent of the atom velocity, as expected for a topological phase.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.111.030401DOI Listing

Publication Analysis

Top Keywords

topological phase
12
measurement he-mckellar-wilkens
8
phase
8
phase atom
8
atom interferometry
8
atom velocity
8
hmw phase
8
atom
5
he-mckellar-wilkens topological
4
interferometry test
4

Similar Publications

Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes.

Nano Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.

View Article and Find Full Text PDF

Resolving and routing magnetic polymorphs in a 2D layered antiferromagnet.

Nat Mater

January 2025

State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai, China.

Polymorphism, commonly denoting diverse molecular or crystal structures, is crucial in the natural sciences. In van der Waals antiferromagnets, a new type of magnetic polymorphism arises, presenting multiple layer-selective magnetic structures with identical total magnetization. However, resolving and manipulating such magnetic polymorphs remain challenging.

View Article and Find Full Text PDF

Chiral vortices and their phase transition in ferroelectric/dielectric heterostructures have drawn significant attention in the field of condensed matter. However, the dynamical origin of the chiral phase transition from achiral to chiral polar vortices has remained elusive. Here, we develop a phase-field perturbation model and discover the softening of out-of-plane vibration mode of polar vortices in [(PbTiO)/(SrTiO)] superlattices at a critical epitaxial strain or temperature.

View Article and Find Full Text PDF

Understanding topological defects-controlled structural degradation of layered oxides-a key cathode material for high-performance lithium-ion batteries-plays a critical role in developing next-generation cathode materials. Here, by constructing a nanobattery in an electron microscope enabling atomic-scale monitoring of electrochemcial reactions, we captured the electrochemically driven atomistic dynamics and evolution of dislocations-a most important topological defect in material. We deciphered how dislocations nucleate, move, and annihilate within layered cathodes at the atomic scale.

View Article and Find Full Text PDF

Unlabelled: The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!