The local heating effect by magnetic nanoparticles aggregate on support lipid bilayers.

J Biomed Nanotechnol

Department of Medical Engineering, Jinling Hospital, Clinical School of Medical College of Nanjing University, Zhongshan East Road 305, Xuanwu District, Nanjing, Jiangsu Province 200012, China.

Published: July 2013

In this paper, we established a theoretical model to investigate the local heating effect of magnetic nanoparticles (MNPs) aggregate on the support lipid bilayers (SLBs) under external alternating current (AC) magnetic field, which may be helpful to understand hyperthermia at single cell level. Using atomic force microscope (AFM), the transformation of the support phospholipid bilayers surrounding MNPs aggregate was observed in real-time. We found that the fluidity of lipid bilayers changed when the size of MNPs aggregate larger than 200 nm, as a result of magnetic heating in the AC magnetic field. These experimental data were consistent with the simulation results, which demonstrated the valid of our established model, as well as described more realistically the above phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2013.1655DOI Listing

Publication Analysis

Top Keywords

heating magnetic
12
lipid bilayers
12
mnps aggregate
12
local heating
8
magnetic nanoparticles
8
aggregate support
8
support lipid
8
magnetic field
8
magnetic
5
aggregate
4

Similar Publications

Multimodal imaging of murine cerebrovascular dynamics induced by transcranial pulse stimulation.

Alzheimers Dement

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.

Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.

View Article and Find Full Text PDF

Open frameworks in the NaMn(PO)F fluoro-pyrophosphates system.

Dalton Trans

January 2025

School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China.

Three new sodium manganese fluoro-pyrophosphate compounds, namely, NaMn(PO)F (I), NaMn(PO)F (II), and NaMn(PO)F (III), have been synthesized by heating a mixture of NaPF, NaPOF or NaHPO with different Mn sources in NaNO and KNO fluxes. The structures of the title compounds were characterized single-crystal X-ray diffraction (XRD). II is characteristic of a shell of Na ions that encloses one [Mn(PO)F] unit, whereas I and III reveal three-dimensional (3D) frameworks that consist of MnO, Mn/NaOF octahedra or MnO octahedra and distorted MnO square pyramids with PO units, where Na cations reside in different-membered ring one-dimensional (1D) tunnels.

View Article and Find Full Text PDF

Rapid electrothermal upcycling hexachlorobutadiene (HCBD) polluted distillation residue into turbostratic graphene for enhanced electromagnetic wave absorption.

J Hazard Mater

January 2025

Institute of Zhejiang University - Quzhou, No. 99 Zheda Road, Quzhou 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. Electronic address:

The trichloroethylene production industry generates high-boiling-point solid residues during rectification, which contain high concentrations of chlorinated contaminants, particularly hexachlorobutadiene (HCBD). Traditionally, these distillation residues are managed through co-incineration or landfilling, leading to environmental and economic challenges. In this study, we present a rapid and environmentally friendly electrothermal approach for both detoxifying and upcycling distillation residue into graphene-based electromagnetic wave (EMW) absorbing materials.

View Article and Find Full Text PDF

We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.

View Article and Find Full Text PDF

Rising temperatures due to climate change may affect the quality of open-field cultivated processing tomatoes by altering the nutrient content. Bioinoculants are growing in popularity as a nature-based strategy to mitigate these environmental stresses. Untargeted quantitative NMR spectroscopy was leveraged to characterize the metabolome of tomato fruits exposed to abiotic stress during the year 2022, which was marked by unexpected high temperatures and low rainfall compared to the year 2021 with average conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!