Natural regulatory T cells limit angiotensin II-induced aneurysm formation and rupture in mice.

Arterioscler Thromb Vasc Biol

From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France (H.A.-O., Y.W., O.H., S.B., S.P., J.J., X.L., P.P., B.E., M.D., L.L., A.T., Z.M.); Service de Réanimation Médicale, Hôpital Saint-Antoine, Université Pierre-et-Marie Curie, Paris, France (H.A.-O.); and Division of Cardiovascular Medicine, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (Z.M.).

Published: October 2013

Objective: Abdominal aortic aneurysm is an inflammatory disease leading to destructive vascular remodeling and ultimately to lethal aortic rupture. Despite its frequent association with atherosclerosis, compelling studies have shown striking differences and potentially opposite roles of T-cell helper responses in aneurysm as compared with atherosclerosis, casting doubt on the relevance and suitability of T-cell-targeted therapies in this context.

Approach And Results: Here, we show that selective depletion of T regulatory (Treg) cells using a CD25-specific monoclonal antibody significantly enhances the susceptibility of C57Bl/6 mice to angiotensin II-induced abdominal aortic aneurysm and promotes aortic rupture (n=25-44 mice/group). Similar results are observed in angiotensin II-treated Cd80(-/-)/Cd86(-/-) or Cd28(-/-) mice with impaired Treg cell homeostasis (n=18-23 mice/group). Treg cell depletion is associated with increased immune cell activation and a blunted interleukin (IL)-10 anti-inflammatory response, suggesting an immunoinflammatory imbalance. Interestingly, Il-10(-/-) mice (n=20 mice/group) show increased susceptibility to angiotensin II-induced abdominal aortic aneurysm and aortic rupture and are insensitive to Treg cell depletion. Finally, reconstitution of Cd28(-/-) Treg-deficient mice with Treg cells (n=22 mice/group) restores a balance in the immunoinflammatory response, rescues the animals from increased susceptibility to aneurysm, and prevents aortic dissection.

Conclusions: These results identify a critical role for Treg cells and IL-10 in the control of aneurysm formation and its progression to rupture and suggest that therapies targeting Treg responses may be most suited to treat aneurysmal disease.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.113.301280DOI Listing

Publication Analysis

Top Keywords

angiotensin ii-induced
12
abdominal aortic
12
aortic aneurysm
12
aortic rupture
12
treg cells
12
treg cell
12
aneurysm formation
8
ii-induced abdominal
8
cell depletion
8
increased susceptibility
8

Similar Publications

Heart failure is a common and deadly disease requiring new treatments. The neuregulin-1/ERBB4 pathway offers cardioprotective benefits, but using recombinant neuregulin-1 as therapy has limitations due to the need for intravenous delivery and lack of receptor specificity. We hypothesize that small-molecule activation of ERBB4 could protect against heart damage and fibrosis.

View Article and Find Full Text PDF

Intravenous injection of PCSK9 gain-of-function mutation in C57BL/6J background mice on Angiotensin II-induced AAA.

Biochim Biophys Acta Mol Basis Dis

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. Electronic address:

Objective: This study was performed to compare the incidence of Angiotensin II (Ang II)-induced abdominal aortic aneurysms (AAA) between intravenous and intraperitoneal injection of AAV8.mPCSK9 in wild-type (WT) mice with C57BL/6J background and the pathological differences of above model in WT and ApoE mice.

Design: Male WT mice were injected intraperitoneally or intravenously with either a AAV8.

View Article and Find Full Text PDF

VSMC-specific TRPC1 deletion attenuates angiotensin II-induced hypertension and cardiovascular remodeling.

J Mol Med (Berl)

January 2025

Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China.

Article Synopsis
  • TRPC1 is a ion channel linked to cardiovascular issues, with increased expression observed in both treated vascular smooth muscle cells (VSMCs) and aortas of hypertensive mice.
  • Lack of TRPC1 in VSMCs significantly reduces AngII-induced effects like vasoconstriction, hypertension, and heart changes, indicating its crucial role in these processes.
  • The study identifies the EZH2-TRPC1-MEK/ERK pathway as a significant contributor to hypertension, suggesting that targeting TRPC1 or EZH2 could be effective in treating high blood pressure and related cardiovascular problems.
View Article and Find Full Text PDF

ClC-5 knockout mitigates angiotensin II-induced hypertension and endothelial dysfunction.

Life Sci

December 2024

Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China. Electronic address:

Aims: Impairment of nitric oxide (NO) production is a major cause of endothelial dysfunction and hypertension. ClC-5 Cl channel is abundantly expressed in the vascular endothelium. However, it remains unclear how it regulates endothelial function.

View Article and Find Full Text PDF

Background: The role of 1,25-dihydroxyvitamin-D3 (VitD) and sirtuin-1 (SIRT1) in mitigating pathological cardiac remodeling is well recognized. However, the potential for SIRT1 to mediate the inhibitory effects of VitD on angiotensin II (Ang II) -induced hypertrophy in H9c2 cardiomyoblasts remains unclear.

Methods: H9c2 cardiomyoblasts were exposed to Ang II or a combination of VitD and Ang II, both in the absence and presence of SIRT1-specific siRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!