Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

Adv Mater

Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27695, USA.

Published: September 2013

Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201301920DOI Listing

Publication Analysis

Top Keywords

aligned carbon
8
lithium ion
8
ion battery
8
deposition silicon
8
carbon nanotube-silicon
4
nanotube-silicon sheets
4
sheets novel
4
novel nano-architecture
4
nano-architecture flexible
4
flexible lithium
4

Similar Publications

The emergence and global spread of carbapenem-resistant complex species present a pressing public health challenge. Carbapenem-resistant spp. cause a wide variety of infections, including septic shock fatalities in newborns and immunocompromised adults.

View Article and Find Full Text PDF

Carbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties . This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis.

View Article and Find Full Text PDF

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.

View Article and Find Full Text PDF

Current researches on sodium penetration in electrolytic aluminum cathode carbon blocks primarily measure cathode expansion curves, showing mostly macroscopic characteristics. However, the microscopic structure is often underexplored. As a porous medium, the diffusion performance of cathode carbon blocks is closely tied to their internal pore structure.

View Article and Find Full Text PDF

Constructing n/n Type Perovskite Homojunctions to Achieve High-Efficiency and Stable Printable Mesoscopic Perovskite Solar Cells.

Small

January 2025

Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.

In recent years, carbon-based printable mesoscopic perovskite solar cells (p-MPSCs) without hole transport layers have garnered considerable interest because of their outstanding benefits in terms of stability and cost. However, the use of carbon electrodes instead of hole transport materials and noble metal electrodes leads to energy level mismatch, which limits the power conversion efficiency (PCE) of p-MPSCs. In this work, a molecular doping strategy is proposed employing cyclopentylmethanamine to passivate surface and subsurface crystal defects in perovskite layers while inducing an energy shift toward the p-type in the perovskite region within carbon electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!