Protein sumoylation in brain development, neuronal morphology and spinogenesis.

Neuromolecular Med

Institut de Pharmacologie Moléculaire et Cellulaire, Laboratory of Excellence 'Network for Innovation on Signal Transduction Pathways in Life Sciences', UMR7275, Centre National de la Recherche Scientifique, University of Nice-Sophia-Antipolis, 660 route des lucioles, 06560, Valbonne, France.

Published: December 2013

Small ubiquitin-like modifiers (SUMOs) are polypeptides resembling ubiquitin that are covalently attached to specific lysine residue of target proteins through a specific enzymatic pathway. Sumoylation is now seen as a key posttranslational modification involved in many biological processes, but little is known about how this highly dynamic protein modification is regulated in the brain. Disruption of the sumoylation enzymatic pathway during the embryonic development leads to lethality revealing a pivotal role for this protein modification during development. The main aim of this review is to briefly describe the SUMO pathway and give an overview of the sumoylation regulations occurring in brain development, neuronal morphology and synapse formation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12017-013-8252-zDOI Listing

Publication Analysis

Top Keywords

brain development
8
development neuronal
8
neuronal morphology
8
enzymatic pathway
8
protein modification
8
protein sumoylation
4
sumoylation brain
4
development
4
morphology spinogenesis
4
spinogenesis small
4

Similar Publications

Development of precision medicine approaches to advance clinical trials for autism and social behavior: A research imperative.

Proc Natl Acad Sci U S A

January 2025

Clinic for Autism and Neurodevelopmental research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.

View Article and Find Full Text PDF

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

The aim was to explore the application value of dynamic electroencephalography (EEG) combined with brainstem auditory evoked potential (BAEP) in evaluating the degree of vascular stenosis and prognosis in patients with ischemic stroke (IS). This was a retrospective study using clinical data of patients with IS admitted to the First Affiliated Hospital of Chongqing Medical and Pharmaceutical College from March 2020 to March 2022. The degree of vascular stenosis and prognosis of patients were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!