Expression of aryl hydrocarbon receptor nuclear translocator enhances cisplatin resistance by upregulating MDR1 expression in cancer cells.

Mol Pharmacol

Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (Y.-Y.C., S.K., B.-K.C.); Department of Clinical Pharmacology and Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacology, Taipei Medical University, Taipei, Taiwan (W.-Chi.C.); Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (W.-Cha.C.); Department of Pharmacy, Taipei Medical University-Wanfang Hospital, Taipei, Taiwan (W.-Chi.C.); and Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (B.-K.C.).

Published: October 2013

The identification of molecular pathways in cancer cells is important for understanding the cells' underlying biology and for designing effective cancer therapies. We demonstrate that the expression of aryl hydrocarbon receptor nuclear translocator (ARNT) is critical during the development of cisplatin resistance. The reduced expression of ARNT was correlated with cisplatin-induced cell death in drug-sensitive cells. In addition, suppression of ARNT reversed the characteristics of cisplatin-resistant cells, making these cells cisplatin-sensitive, and significantly enhanced caspase-3 activation, DNA fragmentation, and apoptosis. The inhibition of colony formation, regulated by cisplatin, was more significant in ARNT-knockdown cells than in parental cells. In a xenograft analysis of severe combined immunodeficiency mice, cisplatin also efficiently inhibited ARNT-deficient c4 tumors but not ARNT-containing vT2 tumor formation. Furthermore, the downregulation of multidrug resistance 1 (MDR1) expression and retention of drugs in cells caused by suppression of ARNT, resulting in the resensitization of drug-resistant cells to cisplatin, was observed. When overexpressed, ARNT interacted with Sp1 to enhance the expression of MDR1 through Sp1-binding sites on the MDR1 promoter, resulting in a reversal of the effect of cisplatin on cell death. In addition, ARNT-induced MDR1 expression was inhibited in Sp1-knockdown cells. These results reveal previously unrecognized, multifaceted functions of ARNT in establishing the drug-resistant properties of cancer cells by the upregulation of MDR1, highlighting ARNT's potential as a therapeutic target in an important subset of cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.113.087197DOI Listing

Publication Analysis

Top Keywords

mdr1 expression
12
cancer cells
12
cells
11
expression aryl
8
aryl hydrocarbon
8
hydrocarbon receptor
8
receptor nuclear
8
nuclear translocator
8
cisplatin resistance
8
cell death
8

Similar Publications

Schisandrol B alleviates depression-like behavior in mice by regulating bile acid homeostasis in the brain-liver-gut axis via the pregnane X receptor.

Phytomedicine

December 2024

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China. Electronic address:

Background: Depression is a widely recognized neuropsychiatric disorder. Recent studies have shown a potential correlation between bile acid disorders and depression, highlighting the importance of maintaining bile acid balance for effective antidepressant treatment. Schisandrol B (SolB), a primary bioactive compound from Schisandra chinensis (Turcz.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.

View Article and Find Full Text PDF

Cross-resistance between strain AFS009 metabolites (Howler EVO) and fludioxonil in .

Plant Dis

January 2025

Clemson University, Entomology, Soils, and Plant Sciences, 120 Long Hall, Clemson, South Carolina, United States, 29634-0315;

Howler EVO is a biological fungicide based on metabolites of the bacterium Pseudomonas chlororaphis strain AFS009. One of the metabolites, pyrrolnitrin (PRN), is a chemical analogue of the phenylpyrrole fludioxonil used to manage gray mold of fruit crops caused by Botrytis cinerea. Resistance to fludioxonil in B.

View Article and Find Full Text PDF

Doxorubicin and topotecan resistance in ovarian cancer: Gene expression and microenvironment analysis in 2D and 3D models.

Biomed Pharmacother

January 2025

Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland. Electronic address:

This study explores the mechanisms underlying chemotherapy resistance in ovarian cancer (OC) using doxorubicin (DOX) and topotecan (TOP)-resistant cell lines derived from the drug-sensitive A2780 ovarian cancer cell line. Both two-dimensional (2D) monolayer cell cultures and three-dimensional (3D) spheroid models were employed to examine the differential drug responses in these environments. The results revealed that 3D spheroids demonstrated significantly higher resistance to DOX and TOP than 2D cultures, suggesting a closer mimicry of in vivo tumour conditions.

View Article and Find Full Text PDF

Epigenetic and Cellular Reprogramming of Doxorubicin-Resistant MCF-7 Cells Treated with Curcumin.

Int J Mol Sci

December 2024

Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy.

The MCF-7R breast cancer cell line, developed by treating the parental MCF-7 cells with increasing doses of doxorubicin, serves as a model for studying acquired multidrug resistance (MDR). MDR is a major challenge in cancer therapy, often driven by overexpression of the efflux pump P-glycoprotein (P-gp) and epigenetic modifications. While many P-gp inhibitors show promise in vitro, their nonspecific effects on the efflux pump limit in vivo application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!