Objectives: Computed diffusion-weighted magnetic resonance imaging (cDWI) refers to the synthesizing of arbitrary b value diffusion-weighted images (DWI) from a set of measured b value images by voxelwise fitting. The objectives of this study were to quantitatively analyze the noise and the contrast-to-noise ratio (CNR) in cDWI as a function of b value by numerical simulations and by measurements in patients with prostate cancer and to compare cDWI to directly measured DWI at a b value of 1400 s/mm2.
Materials And Methods: Numerical simulations were performed to assess image noise and CNR in both cDWI and regular DWI. Forty-two patients with prostate cancer (age, 51-73 years; prostate specific antigen level, 0.5-30 ng/mL; and biopsy Gleason score, 6-9) received 2 DWI examinations at 3.0 T (one with b values of 100, 500, and 1400 s/mm2 and another with b values of 0, 100, 400, and 800 s/mm2) to create cDWI images at arbitrary b values, both with and without incorporating a b value of 0 s/mm2 in their calculation. Regions of interest were drawn to compare the scan time adjusted CNR (CNR eff) between cDWI and directly measured DWI at b = 1400 s/mm2 on tumor-suspicious lesions and normal-appearing regions.
Results: In the numerical simulations, noise depended strongly on the b value, the diffusion coefficient, and the signal intensity at a b value of 0 s/mm2 in cDWI but not in regular DWI. The CNR between simulated tumor and normal regions showed a continuous increase with increasing b value. Both these findings were also observed in tumor-suspicious and normal-appearing regions in in vivo data. In vivo prostate DWI at a b value of 1400 s/mm2 showed a similar CNR eff between the tumor-suspicious regions and the normal-appearing tissue in cDWI as in the directly measured DWI (P = 0.395).
Conclusions: The CNR eff between tumor-suspicious and normal-appearing prostate tissue in DWI images at a b value of 1400 s/mm2 is comparable in cDWI and directly measured DWI. Computed DWI at even higher b values, calculated from measured images with b values between 0 and 800 s/mm2, yields higher CNR eff than measured DWI, which may be of clinical aid in the management of prostate cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RLI.0b013e31829705bb | DOI Listing |
Invest Radiol
January 2025
From the Department of Radiology, Stanford University, Stanford, CA (K.W., M.J.M., A.M.L., A.B.S., A.J.H., D.B.E., R.L.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (K.W.); GE HealthCare, Houston, TX (X.W.); GE HealthCare, Boston, MA (A.G.); and GE HealthCare, Menlo Park, CA (P.L.).
Objectives: Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal.
View Article and Find Full Text PDFCureus
December 2024
Department of Radiology, University of Medicine and Pharmacy of Craiova, Craiova, ROU.
Background: Cervical cancer is considered one of the most common gynecological malignancies with an increased incidence in developing countries. Magnetic resonance imaging (MRI) plays a valuable role in staging cervical cancer and providing valuable information necessary for selecting the appropriate treatment plan, while closely correlating with the prognosis of the patient.
Objective: The aim of this study is to assess the diagnostic value of diffusion-weighted imaging (DWI) in the preoperative loco-regional staging of cervical carcinoma.
AJNR Am J Neuroradiol
January 2025
From the Department of Radiology, Medical Physics (MML, TJC), Department of Interventional Radiology (NS, GAC), Department of Surgery and Large Animal Studies (MAN), and the Department of Statistics (MG), University of Chicago, Chicago, IL, USA; Department of Anesthesiology (SPR), University of Illinois, Chicago, IL, USA; Department of Radiology (MSS), University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Radiology, Biomedical Engineering and Imaging Institute (Current affiliation MML), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Carmel Health Systems (Current affiliation GAC), Columbus, OH, USA.
Background And Purpose: In acute ischemic stroke, the amount of "local" CBF distal to the occlusion, i.e. all blood flow within a region whether supplied antegrade or delayed and dispersed through the collateral network, may contain valuable information regarding infarct growth rate and treatment response.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Diagnostic and Interventional Radiology, University Hospital Split, Spinčićeva 1, 21000 Split, Croatia.
Med Phys
January 2025
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!