Reevaluating the infection status by the Wolbachia endosymbiont in Drosophila Neotropical species from the willistoni subgroup.

Infect Genet Evol

Laboratório de Drosophila, Departamento de Genética, Programa de Pós Graduação em Genética e Biologia Molecular (PPGBM), Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Electronic address:

Published: October 2013

Infections by the endosymbiotic bacterium Wolbachia developed a rapid global expansion within Old World Drosophila species, ultimately infecting also Neotropical species. In this sense, screenings are necessary to characterize new variants of Wolbachia or new hosts, and also in order to map the dynamics of already known infections. In this paper, we performed a double screening approach that combined Dot-blot and PCR techniques in order to reevaluate the infection status by Wolbachia in species from the willistoni subgroup of Drosophila. Genomic DNA from isofemale lines descendent from females collected in the Amazonian Rainforest (n=91) were submitted to Dot-blot, and were positive for Wolbachia, producing a gradient of hybridization signals, suggesting different infection levels, which was further confirmed through quantitative PCR. Samples with a strong signal in the Dot-blot easily amplified in the wsp-PCR, unlike most of the samples with a medium to weak signal. It was possible to molecularly characterize three Drosophila equinoxialis isofemale lines that were found to be infected in a low density by a wMel-like Wolbachia strain, which was also verified in a laboratory line of Drosophila paulistorum Amazonian. We also found Drosophila tropicalis to be infected with the wAu strain and a Drosophila paulistorum Andean-Brazilian semispecies laboratory line to be infected with a wAu-like Wolbachia. Moreover, we observed that all Drosophila willistoni samples tested with the VNTR-141 marker harbor the same Wolbachia variant, wWil, either in populations from the South or the North of Brazil. Horizontal transfer events involving species of Old World immigrants and Neotropical species of the willistoni subgroup are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2013.07.022DOI Listing

Publication Analysis

Top Keywords

neotropical species
12
species willistoni
12
willistoni subgroup
12
infection status
8
wolbachia
8
status wolbachia
8
drosophila
8
isofemale lines
8
drosophila paulistorum
8
species
6

Similar Publications

The nocturnal behaviour and reproduction patterns of Sarcophagidae species during the scotophase are largely unexplored for species in the Neotropical region. The aim of this study was to assess the light regimes under which females of Peckia (Peckia) chrysostoma (Wiedemann, 1830) and Peckia (Sarcodexia) lambens (Wiedemann, 1830) would larviposit and understand how these variables influence intrauterine development in these flies. The experiments were conducted in an experimental room (lux = 100) in two independent experiments: I.

View Article and Find Full Text PDF

Brown algae are vital structural elements and contributors to biodiversity in marine ecosystems. These organisms adapt to various environmental challenges by producing primary and secondary metabolites crucial for their survival, defense, and resilience. Besides their ecological role, these diverse metabolites have potential for biotechnological applications in industries including pharmaceuticals, cosmetics, and food.

View Article and Find Full Text PDF

Dendropsophusis one of the most species-rich genera of treefrogs. Recent studies integrating Sanger-generated mitochondrial and nuclear loci with phenomic characters (SP) have advanced understanding of this clade, but questions about its internal relationships and biogeographic history persist. To address these questions, we used anchored hybrid enrichment (AHE) to combine 432 nuclear loci for 78 taxa (72 % of species) with published data.

View Article and Find Full Text PDF

Two new species and a new record of Hypoxylaceae (Xylariales, Ascomycota) from Mexico.

MycoKeys

December 2024

Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico Universidad Nacional Autónoma de México Ciudad de México Mexico.

The family Hypoxylaceae has a cosmopolitan distribution with greater diversity in tropical regions, its growth habit is saprotrophic, endophytic and potentially phytopathogenic. From the revision of herbarium specimens and field collections from the Yucatan Peninsula, two new species were described: , characterized by having fusiform spores and which is distinguished by having stromata vinaceous and dark brown KOH-extractable pigments. The species are described based on morphological characters and Bayesian Inference analyses of four molecular markers (ITS, LSU, RPB2 and TUB2).

View Article and Find Full Text PDF

Fish acting as sinks of methane-derived carbon in Neotropical floodplains.

Sci Total Environ

December 2024

Department of Biology (DBI), State University of Maringá, Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Graduate Program in Ecology of Inland Water Ecosystems (PEA), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Nucleus of Limnology, Ictiology and Aquaculture (NUPELIA) of State University of Maringá (UEM). Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Graduate Program Comparate Biology (PGB), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil.

Floodplains function as global hotspots for the natural production of methane. Some of this methane can be oxidized by methanotrophic bacteria and assimilated into their biomass before reaching the atmosphere. Consequently, aquatic invertebrates that feed on methanotrophic bacteria may transfer methane-derived carbon to higher trophic levels in the aquatic food chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!