Fiber orientation mapping through diffusion tensor imaging (DTI) is a powerful MRI-based technique for visualising white matter (WM) microstructure in the brain. Although DTI provides a robust way to measure fiber orientation, it has some limitations linked to the use of EPI read-outs and long diffusion encoding periods, including relatively low spatial resolution. Development of alternative MRI-based methods for fiber orientation mapping is therefore valuable, in part to allow validation of DTI results. In this study, we used the orientation dependence of R2* (1/T2*) and frequency difference measurements to generate three dimensional maps of the fiber orientation in WM from multi-echo gradient-echo (GE) images acquired from post mortem brain tissue samples oriented at multiple angles to B0. Through analytical derivation and numerical simulation, the relationships connecting variations in R2* and frequency difference values to the angle between the underlying WM fiber orientation and the direction of B0 were characterised. High resolution 3D fiber orientation maps (FOM) were then formed by comparing R2* and frequency difference data, acquired with the sample at multiple orientations to the field, to generalised models based on the derived expressions for the angular dependence of each parameter. By comparing the resulting GE-based FOM with DTI-based FOM from the same tissue sample, we demonstrate that fiber orientation mapping based on gradient echo MRI has the potential to become an important tool for investigating microstructure in brain tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2013.07.054 | DOI Listing |
Front Robot AI
January 2025
School of Engineering, Institute of Science Tokyo, Tokyo, Japan.
Animal muscles have complex, three-dimensional structures with fibers oriented in various directions. The tongue, in particular, features a highly intricate muscular system composed of four intrinsic muscles and several types of extrinsic muscles, enabling flexible and diverse movements essential for feeding, swallowing, and speech production. Replicating these structures could lead to the development of multifunctional manipulators and advanced platforms for studying muscle-motion relationships.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India. Electronic address:
Millets are drought-resistant crops that generate significant amount of by-products (bran, husk, stalk etc.) during harvesting and processing. These by-products are storehouse of nutrients and high value compounds including polyphenols, dietary fiber, proteins etc.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China. Electronic address:
The high-dynamic, high-loading environment in the joint cavity puts urgent demands on the cartilage regenerative materials with shear responsiveness and lubrication. Here, a new type of injectable hydrogel composed of oxidized hyaluronic acid (OHA), adipic dihydrazide-grafted hyaluronic acid (HA-ADH), oxidized chondroitin sulfate (OChs), and decellularized extracellular matrix methacrylate (dECMMA) was fabricated. The aldehyde groups in OHA and OChs reacted with the amino groups in HA-ADH to form a dynamic hydrogel, which was then covalently crosslinked with dECMMA to create a dual-crosslinked hydrogel with sufficient mechanical strength.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:
Rapid charge recombination, limited light response, and slow surface reactions were observed in the photocatalysts, thereby limiting their future-oriented applications in photocatalytic hydrogen production through water splitting. Constructing a multi-channel charge separation photocatalysis system could solve those questions. In this study, Pd-TiO-CuO composites were successfully accomplished via a facile chemical reduction method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!