Deletion of the N-terminal domain alters the ethanol inhibition of N-methyl-D-aspartate receptors in a subunit-dependent manner.

Alcohol Clin Exp Res

Division of Neuroscience Research and, Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina.

Published: November 2013

Background: Ethanol (EtOH) inhibition of N-methyl-d-aspartate (NMDA) receptors is poorly understood due in part to the organizational complexity of the receptor that provides ample locations for sites of action. Among these, the N-terminal domain (NTD) of NMDA receptor subunits contains binding sites for a variety of modulatory agents including zinc, protons, and GluN2B selective antagonists such as ifenprodil or Ro-25-6981. EtOH inhibition of neuronal NMDA receptors expressed in some brain areas has been reported to be occluded by the presence of ifenprodil or similar compounds suggesting that the NTD may be important in regulating the EtOH sensitivity of NMDA receptors.

Methods: Wild-type GluN1 and GluN2 subunits and those in which the coding sequence for the NTD was deleted were expressed in HEK293 cells. Whole-cell voltage-clamp recording was used to assess EtOH inhibition of wild-type and mutant receptors lacking the NTD.

Results: As compared to wild-type GluN1/GluN2A receptors, EtOH inhibition was slightly greater in cells expressing GluN2A subunits lacking the NTD. In contrast, GluN2B N-terminal deletion mutants showed normal EtOH inhibition while those lacking the NTD in both GluN1 and GluN2B subunits had decreased EtOH inhibition as compared to wild-type receptors. NTD lacking GluN2B receptors were insensitive to ifenprodil but retained normal sensitivity to EtOH.

Conclusions: These findings indicate that the NTD modestly influences the EtOH sensitivity of NMDA receptors in a subunit-dependent manner. They also show that ifenprodil's actions on GluN2B-containing receptors can be dissociated from those of EtOH. These results suggest that while the NTD is not a primary site of action for EtOH on NMDA receptors, it likely affects sensitivity via actions on intrinsic channel properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812356PMC
http://dx.doi.org/10.1111/acer.12168DOI Listing

Publication Analysis

Top Keywords

etoh inhibition
24
nmda receptors
16
receptors
10
etoh
10
n-terminal domain
8
inhibition n-methyl-d-aspartate
8
receptors subunit-dependent
8
subunit-dependent manner
8
ntd
8
etoh sensitivity
8

Similar Publications

Japanese Leaf Burdock Extract Inhibits Adipocyte Differentiation in 3T3-L1 Cells.

Plant Foods Hum Nutr

January 2025

Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan.

Burdock, Arctium lappa Linn. (Asteraceae), is cultivated in East Asian for its edible roots, and its seeds are used in a herbal medicine. Burdock seeds and roots exhibit anti-adipogenic activity.

View Article and Find Full Text PDF

Ethanol (EtOH) gas detection has garnered considerable attention owing to its wide range of applications in industries such as food, pharmaceuticals, medical diagnostics, and fuel management. The development of highly sensitive EtOH-gas sensors has become a focus of research. This study proposes an optical interferometric surface stress sensor for detecting EtOH gas.

View Article and Find Full Text PDF

Jie-Geng-Tang (JGT), composed of Platycodon grandiflorus (Jacq.) A. DC and Glycyrrhiza uralensis Fisch, is widely used in traditional Chinese medicine for its potential effects in preventing pulmonary fibrosis (PF).

View Article and Find Full Text PDF

Background: Artemisia argyi is a well-known medicinal plant. A. argyi has been widely used in clinical for about 3000 years, owing to its extensive pharmacological activity.

View Article and Find Full Text PDF

In this paper, we present a green application for the synthesis of novel pyridine derivatives 4a-f via one-pot, multicomponent reaction (MCRs) of some aromatic aldehydes 1a-f with malononitrile (2) and N-(4-acetylphenyl)-4-methylbenzenesulfonamide (3) in the presence of ammonium acetate using ultrasonic irradiation (U.S) in an aqueous solvent HO:EtOH (2:1). The structures of all synthesized pyridines 4a-f were confirmed via elemental analysis and different spectroscopic techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!