Nodose ganglia are composed of A-, Ah- and C-type neurons. Despite their important roles in regulating visceral afferent function, including cardiovascular, pulmonary, and gastrointestinal homeostasis, information about subtype-specific expression, molecular identity, and function of individual ion transporting proteins is scarce. Although experiments utilizing the sliced ganglion preparation have provided valuable insights into the electrophysiological properties of nodose ganglion neuron subtypes, detailed characterization of their electrical phenotypes will require measurements in isolated cells. One major unresolved problem, however, is the difficulty to unambiguously identify the subtype of isolated nodose ganglion neurons without current-clamp recording, because the magnitude of conduction velocity in the corresponding afferent fiber, a reliable marker to discriminate subtypes in situ, can no longer be determined. Here, we present data supporting the notion that application of an algorithm regarding to microscopic structural characteristics, such as neuron shape evaluated by the ratio between shortest and longest axis, neuron surface characteristics, like membrane roughness, and axon attachment, enables specific and sensitive subtype identification of acutely dissociated rat nodose ganglion neurons, by which the accuracy of identification is further validated by electrophysiological markers and overall positive predictive rates is 89.26% (90.04%, 76.47%, and 98.21% for A-, Ah, and C-type, respectively). This approach should aid in gaining insight into the molecular correlates underlying phenotypic heterogeneity of nodose ganglia. Additionally, several critical points that help for neuron identification and afferent conduction calibration are also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729014PMC
http://dx.doi.org/10.7150/ijbs.7006DOI Listing

Publication Analysis

Top Keywords

nodose ganglion
16
ganglion neurons
12
subtype identification
8
identification acutely
8
acutely dissociated
8
dissociated rat
8
rat nodose
8
nodose ganglia
8
nodose
6
ganglion
5

Similar Publications

Article Synopsis
  • Adrenomedullin (ADM) is a neuropeptide that regulates blood pressure and vasodilation, particularly in females, but its effect on baroreflex afferent function is not well understood.
  • In a study with female rats, microinjection of ADM into the nodose ganglion led to a concentration-dependent reduction in blood pressure and varied responses in different neuron types, highlighting the differential effects on myelinated and unmyelinated neurons.
  • The findings suggest that ADM plays a critical role in mediating baroreflex responses related to hypotension and vasodilation, emphasizing the importance of gender differences in these processes.
View Article and Find Full Text PDF

Noninvasive closed-loop acoustic brain-computer interface for seizure control.

Theranostics

September 2024

Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Article Synopsis
  • The brain-computer interface (BCI) is crucial for advancing neuroscience and understanding brain functions, with non-invasive neuromodulation techniques playing a key role in innovations.
  • Researchers developed a new non-invasive closed-loop acoustic BCI (aBCI) that uses electroencephalography (EEG) to detect seizures and employs ultrasound to stimulate the vagus nerve, effectively stopping seizures in a rat model.
  • The aBCI selectively targets mechanosensitive neurons in the vagus nerve, shows significant effectiveness over conventional methods, and offers a promising and safe option for treating seizure disorders non-invasively.
View Article and Find Full Text PDF

Rat Sympathetic Neuron Calcium Channels Are Insensitive to Gabapentin.

Pharmaceuticals (Basel)

September 2024

Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA.

The gabapentenoids such as gabapentin (GP) and pregabalin are approved for the treatment of chronic pain, but their utility is limited by persistent side effects. These adverse effects result from GPs affecting many types of neurons and muscle cells, not just the pain-sensing neurons that are the intended targets. We have recently discovered a type of peripheral neuron, rat sympathetic neurons from the superior cervical ganglion (SCG), that is uniquely insensitive to GP effects.

View Article and Find Full Text PDF

Expression of the cellular prion protein by mast cells in white-tailed deer carotid body, cervical lymph nodes and ganglia.

Prion

December 2024

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.

Chronic wasting disease (CWD) is a transmissible and fatal prion disease that affects cervids. While both oral and nasal routes of exposure to prions cause disease, the spatial and temporal details of how prions enter the central nervous system (CNS) are unknown. Carotid bodies (CBs) are structures that are exposed to blood-borne prions and are densely innervated by nerves that are directly connected to brainstem nuclei, known to be early sites of prion neuroinvasion.

View Article and Find Full Text PDF

Fibroblast growth factors (FGFs) are required for the specification and formation of the epibranchial placodes, which give rise to the distal part of the cranial sensory ganglia. However, it remains unclear whether FGFs play a role in regulating the neurite outgrowth of the epibranchial placode-derived ganglia during further development. Previous studies have shown that Fibroblast growth factor 8 (FGF8) promotes neurite outgrowth from the statoacoustic ganglion in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!