A truncated-Flt1 isoform of breast cancer cells is upregulated by Notch and downregulated by retinoic acid.

J Cell Biochem

Laboratori de Genètica Molecular, Departament de Ciències Fisiològiques I, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.

Published: January 2014

AI Article Synopsis

  • The major isoform of Flt1/VEGFR-1 in MDA-MB-231 breast cancer cells is a truncated intracellular isoform known as i21 Flt1, which enhances cell invasiveness by activating Src.
  • The expression of i21 Flt1 is regulated by Notch signaling, as shown by its downregulation when treated with a γ-secretase inhibitor and siRNA targeting Notch-1 and Notch-3.
  • Furthermore, the study indicates that retinoic acid can inhibit i21 Flt1 expression, suggesting a potential combined therapeutic strategy using γ-secretase inhibitors and retinoic acid to suppress this isoform in breast cancer.

Article Abstract

We have previously reported that the major isoform of Flt1/VEGFR-1 expressed in MDA-MB-231 breast cancer cells was a truncated intracellular isoform transcribed from intron 21 (i21 Flt1). This isoform upregulated the active form of Src and increased breast cancer cell invasiveness. Since expression of the transmembrane and soluble Flt1 isoforms of HUVEC is activated by Notch signaling, we wondered whether the expression of the intracellular isoform i21 Flt1 was also dependent on Notch activation. We report here that the expression of i21 Flt1 in HUVEC and MDA-MB-231 cells is downregulated by the γ-secretase inhibitor DAPT. In addition, treatment of MDA-MB-231 cells with siRNA specific for Notch-1 and Notch-3 downregulates the expression of i21 Flt1. In agreement with these findings, HUVEC and MDA-MB-231 breast cancer cells, cultured on dishes coated with recombinant human Dll4 extracellular domain, express higher levels of i21 Flt1. In cancer cells, Flt1 is a target of the micro RNA family miR-200. In MDA-MB-231 breast cancer cells, the truncated intracellular isoform i21 Flt1 is also negatively regulated by miR-200c. Retinoic acid interferes i21 Flt1 expression by downregulating Notch-3 and upregulating miR-200 expression. Treatment of MDA-MB-231 breast cancer cells with both a γ-secretase inhibitor and retinoic acid suppresses the expression of i21 Flt1, providing a new mechanism to explain the effectiveness of this therapeutic approach.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.24632DOI Listing

Publication Analysis

Top Keywords

i21 flt1
32
breast cancer
24
cancer cells
24
mda-mb-231 breast
16
retinoic acid
12
intracellular isoform
12
expression i21
12
flt1
10
cells
8
cells truncated
8

Similar Publications

A truncated-Flt1 isoform of breast cancer cells is upregulated by Notch and downregulated by retinoic acid.

J Cell Biochem

January 2014

Laboratori de Genètica Molecular, Departament de Ciències Fisiològiques I, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.

Article Synopsis
  • The major isoform of Flt1/VEGFR-1 in MDA-MB-231 breast cancer cells is a truncated intracellular isoform known as i21 Flt1, which enhances cell invasiveness by activating Src.
  • The expression of i21 Flt1 is regulated by Notch signaling, as shown by its downregulation when treated with a γ-secretase inhibitor and siRNA targeting Notch-1 and Notch-3.
  • Furthermore, the study indicates that retinoic acid can inhibit i21 Flt1 expression, suggesting a potential combined therapeutic strategy using γ-secretase inhibitors and retinoic acid to suppress this isoform in breast cancer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!