In nonhuman primates, Vγ9Vδ2(+) (Vδ2)T cells proliferate and accumulate in mucosal tissues following microbial activation. Human Vδ2T cells produce proinflammatory cytokines in response to bacterial species that colonize the gut, but the role played by Vδ2T cells in intestinal immunity is unknown. We hypothesized that circulating Vδ2T cells can populate the human intestine and contribute to mucosal inflammation. Cell suspensions prepared from peripheral blood and intestinal biopsies were stimulated with microbial phosphoantigen (1-hydroxy-2-methyl-2-buten-4-yl 4-diphosphate [HDMAPP]) and analyzed by flow cytometry to determine Vδ2T cell phenotype, cytokine production, and proliferative potential. Circulating Vδ2T cells expressed gut-homing integrin α4β7 (>70%), which was coexpressed with skin-associated cutaneous leukocyte Ag by up to 15% of the total population. However, Vδ2T cell activation with HDMAPP and exposure to retinoic acid (signaling via retinoic acid receptor α) increased α4β7 expression and enhanced binding to mucosal addressin cell adhesion molecule-1 in vitro while simultaneously suppressing cutaneous leukocyte Ag, thereby generating a committed gut-tropic phenotype. Confocal microscopy and flow cytometry identified frequent Vδ2T cells that migrated out of human intestinal biopsies and comprised both CD103(+) and CD103(-) subsets that produced TNF-α and IFN-γ upon phosphoantigen exposure, with more frequent cytokine-producing cells in the CD103(-) population. Activated intestinal Vδ2T cells expressed CD70 and HLA-DR but were unable to drive the proliferation of allogeneic naive CD4(+) T cells. Instead, phosphoantigen-activated CD103(-) Vδ2T cells increased T-bet expression and enhanced IFN-γ production by autologous colonic αβ T cells via an IFN-γ-dependent mechanism. These data demonstrate that circulating Vδ2T cells display enhanced gut-homing potential upon microbial activation and populate the human intestinal mucosa, generating functionally distinct CD103(+) and CD103(-) subsets that can promote inflammation by colonic αβ T cells.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1202959DOI Listing

Publication Analysis

Top Keywords

vδ2t cells
36
cells
15
populate human
12
human intestinal
12
colonic αβ
12
αβ cells
12
circulating vδ2t
12
vδ2t
11
cells populate
8
intestinal mucosa
8

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .

Proc Natl Acad Sci U S A

January 2025

Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!