The possibility of obtaining large numbers of cells with potential to become functional neurons implies a great advance in regenerative medicine. A source of cells for therapy is the subventricular zone (SVZ) where adult neural stem cells (NSCs) retain the ability to proliferate, self-renew, and differentiate into several mature cell types. The neurosphere assay, a method to isolate, maintain, and expand these cells has been extensively utilized by research groups to analyze the biological properties of aNSCs and to graft into injured brains from animal models. In this review we briefly describe the neurosphere assay and its limitations, the methods to optimize culture conditions, the identity and the morphology of aNSC-derived neurospheres (including new ultrastructural data). The controversy regarding the identity and "stemness" of cells within the neurosphere is revised. The fine morphology of neurospheres, described thoroughly, allows for phenotypical characterization of cells in the neurospheres and may reveal slight changes that indirectly inform about cell integrity, cell damage, or oncogenic transformation. Along this review we largely highlight the critical points that researchers have to keep in mind before extrapolating results or translating experimental transplantation of neurosphere-derived cells to the clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.22746 | DOI Listing |
Curr Protoc
January 2025
Department of Neurosurgery, Michigan Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
Gliomas are aggressive tumors with a poor prognosis. The protocols presented here outline the methods used to study tumor progression, the tumor microenvironment (TME), and the effects of experimental treatments. The Sleeping Beauty (SB) transposase system induces tumors de novo to generate mouse models that recapitulate human gliomas.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
Stem Cell Res Ther
December 2024
Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Guangzhou, 510120, China.
Background: Cancer stem cells (CSCs) have unique metabolic characteristics and are hypothesized to contribute significantly to the recurrence and drug resistance of glioblastoma multiforme (GBM). However, the reliance on mitochondrial metabolism and the underlying mechanism of glioblastoma stem cells (GSCs) remains to be elucidated.
Methods: To quantify differential mitochondrial protein expression between GSCs and differentiated cells, a mass spectrum screen was applied by the Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) technique.
Cells
December 2024
Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL 35249, USA.
The gold standard assay for radiation response is the clonogenic assay, a normalized colony formation assay (CFA) that can capture a broad range of radiation-induced cell death mechanisms. Traditionally, this assay relies on two-dimensional (2D) cell culture conditions with colonies counted by fixing and staining protocols. While some groups have converted these to three-dimensional (3D) conditions, these models still utilize 2D-like media compositions containing serum that are incompatible with stem-like cell models such as brain tumor initiating cells (BTICs) that form self-aggregating spheroids in neural stem cell media.
View Article and Find Full Text PDFJ Proteomics
December 2024
Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil. Electronic address:
This pipeline presents a refined approach for deriving personalized neurobiological insights from iPSC-derived neurospheres. By employing Tandem Mass Tag (TMT) labeling, we optimized sample pooling and multiplexing for robust comparative analysis across experimental conditions, maximizing data yield per sample. Through single-patient-derived neurospheres-composed of neural progenitor cells, early neurons, and radial glia-this study explores proteomic profiling to mirror the cellular complexity of neurodevelopment more accurately than traditional 2D cultures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!