Introduction: SWI can help to identify high-grade gliomas (HGG). The objective of this study was to analyse SWI and CE-SWI characteristics, i.e. the relationship between contrast-induced phase shifts (CIPS) and intratumoral susceptibility signals (ITSS) and their association with tumour volume in patients with glioblastoma multiforme (GBM).
Materials And Methods: MRI studies of 29 patients were performed to evaluate distinct susceptibility signals comparing SWI and CE-SWI characteristics. The relationship between these susceptibility signals and CE-T1w tumour volume was analysed by using Spearman's rank correlation coefficient and Kruskal-Wallis-test. Tumour biopsies of different susceptibility signals were performed in one patient.
Results: Comparison of SWI and CE-SWI demonstrated different susceptibility signals. Susceptibility signals visible on SWI images are consistent with ITSS; those only seen on CE-SWI were identified as CIPS. Correlation with CE-T1w tumour volume revealed that CIPS were especially present in small or medium-sized GBM (Spearman's rho r = 0.843, P < 0.001). Histology identified the area with CIPS as the tumour invasion zone, while the area with ITSS represented micro-haemorrhage, highly pathological vessels and necrosis.
Conclusion: CE-SWI adds information to the evaluation of GBM before therapy. It might have the potential to non-invasively identify the tumour invasion zone as demonstrated by biopsies in one case.
Key Points: • MRI is used to help differentiate between low- and high-grade gliomas. • Contrast-enhanced susceptibility-weighted MRI (CE-SWI) helps to identify patients with glioblastoma multiforme. • CE-SWI delineates the susceptibility signal (CIPS and ITSS) more than the native SWI. • CE-SWI might have the potential to non-invasively identify the tumour invasion zone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-013-2895-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!