Transport of macrocyclic compounds across phospholipid bilayers by umbrella-rotaxanes.

Org Biomol Chem

Department of Chemistry-Université de Montréal, 2900 Edouard Montpetit, CP 6128 Succursalle Centre ville, Montréal, QC, Canada H3C3J7.

Published: September 2013

AI Article Synopsis

Article Abstract

We report the synthesis and assembly of umbrella-rotaxanes with transmembrane transport properties. We describe their amphomorphism and validate their ability to penetrate and cross phospholipid bilayers. Furthermore we present the strategy to release the macrocyclic compound by enzymatic cleavage inside egg yolk phosphatidylcholine (EYPC) liposomes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3ob41209aDOI Listing

Publication Analysis

Top Keywords

phospholipid bilayers
8
transport macrocyclic
4
macrocyclic compounds
4
compounds phospholipid
4
bilayers umbrella-rotaxanes
4
umbrella-rotaxanes report
4
report synthesis
4
synthesis assembly
4
assembly umbrella-rotaxanes
4
umbrella-rotaxanes transmembrane
4

Similar Publications

Lipid-induced condensate formation from the Alzheimer's Aβ peptide triggers amyloid aggregation.

Proc Natl Acad Sci U S A

January 2025

Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.

The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.

View Article and Find Full Text PDF

Dissecting the biophysical mechanisms of oleate hydratase association with membranes.

Front Mol Biosci

January 2025

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.

This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.

View Article and Find Full Text PDF

Electroporation and electrofusion are efficient methods, which have been widely used in different areas of biotechnology and medicine. Pulse strength and width, as an external condition, play an important role in the process of these methods. However, comparatively little work has been done to explore the effects of pulsed electric field parameters on electroporation and electrofusion.

View Article and Find Full Text PDF

Photopolymerizable robust lipids towards reliability and their applications.

Biophys Rev

December 2024

Laboratorio de BioNanotecnología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.

Synthetic lipids have been studied as components in membrane models and drug delivery systems. Polymerizable phospholipids, especially photosensitive ones, can form new bilayer bonds when UV light irradiates. These phospholipids have been known since the 1980s, but in the last few years, new applications have been highlighted.

View Article and Find Full Text PDF

α-Synuclein (αSyn), an intrinsically disordered protein implicated in Parkinson's disease, is potentially thought to initiate aggregation through binding to cellular membranes. Previous studies have suggested that anionic membrane charge is necessary for this binding. However, these studies largely focus on unmodified αSyn, while nearly all αSyn in the body is N-terminally acetylated (NTA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!