The beneficial metabolic actions of estrogen-based therapies are mainly mediated by estrogen receptor α (ERα), a nuclear receptor that regulates gene transcription through two activation functions (AFs): AF-1 and AF-2. Using mouse models deleted electively for ERαAF-1 (ERαAF-1°) or ERαAF-2 (ERαAF-2°), we determined their respective roles in the actions of estrogens on body composition and glucose homeostasis in response to either a normal diet or a high-fat diet (HFD). ERαAF-2° males and females developed accelerated weight gain, massive adiposity, severe insulin resistance, and glucose intolerance--quite reminiscent of the phenotype observed in mice deleted for the entire ERα protein (ERα(-/-)). In striking contrast, ERαAF-1° and wild-type (wt) mice shared a similar metabolic phenotype. Accordingly, 17β-estradiol administration regulated key metabolic genes in insulin-sensitive tissues and conferred a strong protection against HFD-induced metabolic disturbances in wt and ERαAF-1° ovariectomized mice, whereas these actions were totally abrogated in ERαAF-2° and ERα(-/-) mice. Thus, whereas both AFs have been previously shown to contribute to endometrial and breast cancer cell proliferation, the protective effect of estrogens against obesity and insulin resistance depends on ERαAF-2 but not ERαAF-1, thereby delineating new options for selective modulation of ERα.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837069 | PMC |
http://dx.doi.org/10.2337/db13-0282 | DOI Listing |
Curr Cardiol Rep
January 2025
Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Purpose Of Review: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, characterized by hepatic steatosis with at least one cardiometabolic risk factor. Patients with MASLD are at increased risk for the occurrence of cardiovascular events. Within this review article, we aimed to provide an update on the pathophysiology of MASLD, its interplay with cardiovascular disease, and current treatment strategies.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.
Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.
View Article and Find Full Text PDFBMC Public Health
January 2025
Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Gran Via de Les Corts Catalanes, 587 Àtic, 08007, Barcelona, Spain.
This study examines remaining life expectancy (RLE) after a cancer diagnosis, focusing on age, sex, cancer type, and metabolic syndrome (MS) components, using data from the SIDIAP database in Catalonia (2006-2017). RLE was analyzed for 13 cancer types, stratified by sex and MS components. The cohort study includes 183,364 individuals followed from diagnosis until death, transfer, or study end (December 2017).
View Article and Find Full Text PDFClin Oral Investig
January 2025
Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
Objectives: Apical periodontitis (AP) is an inflammatory immune response in periapical tissues caused by microbial infections. Failure of root canal treatment or delayed healing is often due to intracanal or extra-radicular bacteria. However, beyond microbial factors, the patient's systemic health can significantly influence the progression and healing of AP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!