The Antarctic Chlamydomonas raudensis: an emerging model for cold adaptation of photosynthesis.

Extremophiles

Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH 45056, USA.

Published: September 2013

Permanently cold habitats dominate our planet and psychrophilic microorganisms thrive in cold environments. Environmental adaptations unique to psychrophilic microorganisms have been thoroughly described; however, the vast majority of studies to date have focused on cold-adapted bacteria. The combination of low temperatures in the presence of light is one of the most damaging environmental stresses for a photosynthetic organism: in order to survive, photopsychrophiles (i.e. photosynthetic organisms adapted to low temperatures) balance temperature-independent reactions of light energy capture/transduction with downstream temperature-dependent metabolic processes such as carbon fixation. Here, we review research on photopsychrophiles with a focus on an emerging model organism, Chlamydomonas raudensis UWO241 (UWO241). UWO241 is a psychrophilic green algal species and is a member of the photosynthetic microbial eukaryote community that provides the majority of fixed carbon for ice-covered lake ecosystems located in the McMurdo Dry Valleys, Antarctica. The water column exerts a range of environmental stressors on the phytoplankton community that inhabits this aquatic ecosystem, including low temperatures, extreme shade of an unusual spectral range (blue-green), high salinity, nutrient deprivation and extremes in seasonal photoperiod. More than two decades of work on UWO241 have produced one of our most comprehensive views of environmental adaptation in a cold-adapted, photosynthetic microbial eukaryote.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00792-013-0571-3DOI Listing

Publication Analysis

Top Keywords

low temperatures
12
chlamydomonas raudensis
8
emerging model
8
psychrophilic microorganisms
8
uwo241 uwo241
8
photosynthetic microbial
8
microbial eukaryote
8
antarctic chlamydomonas
4
raudensis emerging
4
model cold
4

Similar Publications

Bio-inspired carbon-based artificial muscle with precise and continuous morphing capabilities.

Natl Sci Rev

January 2025

CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.

View Article and Find Full Text PDF

Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Since its introduction, vaccination has heavily improved health outcomes. However, implementing vaccination efforts can be challenging, particularly in low and middle-income countries with warmer climates. Microneedle technology has been developed for its simple and relatively painless applications of vaccines.

View Article and Find Full Text PDF

Temperature profoundly impacts organismal physiology and ecological dynamics, particularly affecting ectothermic species and making them especially vulnerable to climate changes. Although complex physiological processes usually involve dozens of enzymes, empirically it is found that the rates of these processes often obey the Arrhenius equation, which was originally derived for single-enzyme-catalyzed reactions. Here we have examined the temperature scaling of the early embryonic cell cycle, with the goal of understanding why the Arrhenius equation approximately holds and why it breaks down at temperature extremes.

View Article and Find Full Text PDF

Low-temperature oxidation of ethanol to acetaldehyde over Mo-based catalysts.

RSC Adv

January 2025

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences Taiyuan 030001 China

The research and development of the green synthesis route of chemicals has become the focus of research in academia and industry. At present, the highly efficient oxidation of ethanol to acetaldehyde over non-precious metal catalysts under mild conditions is most promising, but remains a big challenge. Herein, the Mo-Sn oxide catalyst was designed to successfully realize low-temperature oxidation of ethanol to acetaldehyde, achieving an acetaldehyde selectivity of 89.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!