RNA polymerase II (Pol II) elongation in metazoans is thought to require phosphorylation of serine 2 (Ser2-P) of the Pol II C-terminal domain (CTD) by the P-TEFb complex, CDK-9/cyclin T. Another Ser2 kinase complex, CDK-12/cyclin K, which requires upstream CDK-9 activity has been identified in Drosophila and human cells. We show that regulation of Ser2-P in C. elegans soma is similar to other metazoan systems, but Ser2-P in the germline is independent of CDK-9, and largely requires only CDK-12. The observed differences are not due to differential tissue expression as both kinases and their cyclin partners are ubiquitously expressed. Surprisingly, loss of CDK-9 from germ cells has little effect on Ser2-P, yet CDK-9 is essential for germline development. By contrast, loss of CDK-12 and Ser2-P specifically from germ cells has little impact on germline development or function, although significant loss of co-transcriptional H3K36 trimethylation is observed. These results show a reduced requirement for Pol II Ser2-P in germline development and suggest that generating Ser2-P is not the essential role of CDK-9 in these cells. Transcriptional elongation in the C. elegans germline thus appears to be uniquely regulated, which may be a novel facet of germline identity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742150 | PMC |
http://dx.doi.org/10.1242/dev.095778 | DOI Listing |
Sci Adv
January 2025
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan.
Front Plant Sci
January 2025
College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
The formation of the female germline is the fundamental process in most flowering plants' sexual reproduction. In , only one somatic cell obtains the female germline fate, and this process is regulated by different pathways. Megaspore mother cell (MMC) is the first female germline, and understanding MMC development is essential for comprehending the complex mechanisms of plant reproduction processes.
View Article and Find Full Text PDFActa Naturae
January 2024
Pluripotency Dynamics Group, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation.
Embryonic stem cells (ESCs) hold great promise for regenerative medicine thanks to their ability to self-renew and differentiate into somatic cells and the germline. ESCs correspond to pluripotent epiblast - the tissue from which the following three germ layers originate during embryonic gastrulation: the ectoderm, mesoderm, and endoderm. Importantly, ESCs can be induced to differentiate toward various cell types by varying culture conditions, which can be exploited for modeling of developmental processes such as gastrulation.
View Article and Find Full Text PDFGenetics
January 2025
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
In the presence of stressful environments, the SKN-1 cytoprotective transcription factor is activated to induce the expression of gene targets that can restore homeostasis. However, chronic activation of SKN-1 results in diminished health and a reduction of lifespan. Here we demonstrate the necessity of modulating SKN-1 activity to maintain the longevity-promoting effects associated with genetic mutations that impair daf-2/insulin receptor signaling, the eat-2 model of dietary restriction, and glp-1-dependent loss of germ cell proliferation.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium.
Purpose: Primary ovarian insufficiency (POI) is an important cause of female infertility, stemming from follicle dysfunction or premature oocyte depletion. Pathogenic variants in genes such as NOBOX, GDF9, BMP15, and FSHR have been linked to POI. NOBOX, a transcription factor expressed in oocytes and granulosa cells, plays a pivotal role in folliculogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!