Gold nanorods (AuNRs) were used as spectroscopic sensing elements to detect specific DNA sequences with a single-base mismatch sensitivity. The assay was based on the observation that the stabilizing repulsive forces between CTA(+)-coated AuNRs can be removed by citrate ions, which causes aggregation among AuNRs; whereas nucleic acids of different structures[ i.e., peptide nucleic acid (PNA), single-stranded DNA (ssDNA), PNA-DNA complex, and double-stranded DNA (dsDNA)] can retard the aggregation. Moreover, the dsDNA PNA-DNA duplexes provide larger retardation than that by unhybridized ssDNA and PNA probe. This assay can differentiate single-base mismatched targets with base substitution at different locations (center and end) with AuNRs of a larger aspect ratio. Besides ultraviolet-visable spectroscopy measurement of particle assembly-induced plasmonic coupling that in turn provides a spectroscopic detection of the specific DNA, dynamic light scattering and transmission electron microscope (TEM) were used to measure smaller degree of aggregation that can reveal sodium citrate- and dsDNA-AuNRs interactions in fine detail.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723236 | PMC |
http://dx.doi.org/10.1089/nat.2013.0421 | DOI Listing |
Curr Opin Genet Dev
January 2025
Department of Biochemistry and Molecular Biophysics, Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:
Enhancers in metazoan genomes are known to activate their target genes across both short and long genomic distances. Recent advances in chromosome conformation capture assays and single-cell imaging have shed light on the underlying chromatin contacts and dynamics. Yet the relationship between 3D physical enhancer-promoter (E-P) interactions and transcriptional activation remains unresolved.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405 Orsay, France.
This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D).
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
Several plant seeds release a mucilaginous envelope through hydration, rich in pectins and stabilized by cellulose fibers. This mucilage aids in seed protection, development, and adhesion for dispersal. This study aimed to separate the effects of pectins and cellulose fibers by using pectinase to remove mucilage pectins, leaving cellulose arrays, and performing wet and dry pull-off force measurements on seeds of three plant species: Salvia hispanica (Chia), Collomia grandiflora (Collomia) and Linum usitatissimum (Flax).
View Article and Find Full Text PDFChemistry
January 2025
University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, 48149, Münster, GERMANY.
Light-responsive hydrogels are highly valued for their dynamic mechanical properties and biocompatibility. In this study, we present a hydrogel system that can either soften or strengthen on green light exposure, or remain unresponsive to light, depending on the addition of adenosyl cobalamin (AdoCbl) and Co2+. These protein-based hydrogels were formed using genetically encoded SpyTag-SpyCatcher chemistry and included green light-sensitive CarHc protein domains.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!