Members of the genus Malassezia are lipophilic basidiomycetous yeasts, which are part of the normal cutaneous microbiota of humans and other warm-blooded animals. Currently, this genus consists of 14 species that have been characterized by phenetic and molecular methods. Although several molecular methods have been used to identify and/or differentiate Malassezia species, the sequencing of the rRNA genes and the chitin synthase-2 gene (CHS2) are the most widely employed. There is little information about the β-tubulin gene in the genus Malassezia, a gene has been used for the analysis of complex species groups. The aim of the present study was to sequence a fragment of the β-tubulin gene of Malassezia species and analyze their phylogenetic relationship using a multilocus sequence approach based on two rRNA genes (ITS including 5.8S rRNA and D1/D2 region of 26S rRNA) together with two protein encoding genes (CHS2 and β-tubulin). The phylogenetic study of the partial β-tubulin gene sequences indicated that this molecular marker can be used to assess diversity and identify new species. The multilocus sequence analysis of the four loci provides robust support to delineate species at the terminal nodes and could help to estimate divergence times for the origin and diversification of Malassezia species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/13693786.2013.815372 | DOI Listing |
Int Immunopharmacol
January 2025
The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China. Electronic address:
Objected: Mal f 1, the first allergen cloned from Malassezia furfur, has been found to have positive IgE reactivity in sera from patients with skin inflammation. In vitro, it has also been shown to induce maturation of dendritic cells and release inflammatory factors. However, its role in skin lipid homeostasis remains largely unexplored.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Harvard T.H Chan School of Public Health - Principles and Practice of Clinical Research (PPCR)- Post- graduate Program, ECPE, Boston, MA, USA.
Mycopathologia
January 2025
Teikyo University Institute of Medical Mycology (TIMM), 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan.
We describe a novel Malassezia species named Malassezia polysorbatinonusus, isolated from a Japanese patient with seborrheic dermatitis. The internal transcribed spacer (ITS) region of the isolate (LSEM 4845) were only 94.7% identical to those of M.
View Article and Find Full Text PDFAMB Express
January 2025
Drug Discovery and Development Division, Patanjali Research Foundation, NH-58, Near Bahadrabad, Haridwar, 249405, Uttarakhand, India.
Malassezia furfur is the primary etiological agent of dandruff (Pityriasis capitis). Although herbal shampoos are preferred for their natural, mild ingredients over synthetic counterparts, they are often perceived as less effective in managing flaky scalp conditions or furfuration causing dandruff. The study compares the antifungal efficacy of herbal and synthetic shampoos against M.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!