Organic solar cells are a favorable alternative to their inorganic counterparts because the functional layers of these devices can be processed with printing or coating on a large scale. In this study, a novel polymer was synthesized, blended with fullerene and deposited with inkjet printing for solar cell applications. Devices with printed layers were compared to those with spin coated films in order to evaluate inkjet printing as a thin film deposition method. Efficiency values of 3.7% were found for devices with inkjet printed or spin coated layers. Inkjet printing can be used to successfully process the active layers of organic solar cells consisting of novel polymers without sacrificing device performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2013.7500 | DOI Listing |
Sci Rep
December 2024
School of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
In recent years, inkjet digital printing technology has become a popular research area. This paper focuses on the spreading behavior of single ink drops on coated paper in digital inkjet printing. It explores the impact of ink drop spreading on monochromatic spectral reflectance, providing new insights for the theoretical development of spectral prediction models.
View Article and Find Full Text PDFInt J Pharm
December 2024
Heinrich Heine University Duesseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, Duesseldorf 40225, Germany. Electronic address:
Transdermal drug delivery using microneedle array patches has been investigated using a wide range of drug substances. Inkjet printing and micromolding are established methods for the production of microneedle array patches and both were used to combine lisinopril embedded in povidone and ibuprofen in Eudragit® RS / RL in a single patch. Dissolution studies, visual inspection, mechanical strength and insertion into an artificial skin membrane model were investigated.
View Article and Find Full Text PDFMol Pharm
December 2024
School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
Amorphous solid dispersions (ASDs) offer a well-recognized strategy to improve the effective solubility and, hence, bioavailability of poorly soluble drugs. In this study, we developed an extensive library of a significant number of solid dispersion formulations using a library of chemically diverse drugs combined with a water-soluble polymer (polyvinylpyrrolidone vinyl acetate, PVPVA) at different loadings. These formulations were printed as microarrays of solid dispersion formulations, utilizing minimal material amounts (nanograms).
View Article and Find Full Text PDFNanoscale
December 2024
Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
Short-wave infrared (SWIR) photodetectors (PDs) have a wide range of applications in the field of information and communication. Especially in recent years, with the increasing demand for consumer electronics, conventional semiconductor-based PDs alone are unable to cope with the ever-increasing market. Colloidal quantum dots (QDs) have attracted great interest due to their low fabrication cost, solution processability, and promising optoelectronic properties.
View Article and Find Full Text PDFNanoscale
December 2024
Fujian Engineering Research Center for Solid-State Lighting, Department of Electronic Science, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361102 Fujian, China.
Quantum dot (QD) materials and their patterning technologies play a pivotal role in the full colorization of next-generation Micro-LED display technology. This article reviews the latest development in QD materials, including II-VI group, III-V group, and perovskite QDs, along with the state of the art in optimizing QD performance through techniques such as ligand engineering, surface coating, and core-shell structure construction. Additionally, it comprehensively covers the progress in QD patterning methods, such as inkjet printing, photolithography, electrophoretic deposition, transfer printing, microfluidics, and micropore filling method, and emphasizes their crucial role in achieving high precision, density, and uniformity in QD deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!