Due to the difficulties in deep sequencing, high-throughput sequencing of ancient DNA has been limited to exceptionally well-preserved ancient materials. The primary factor is microbial attack popularly observed in the buried materials, and it causes drastic increase in relative ratio of microbial DNA in the extracted DNA. We present a unified strategy in which emulsion PCR is coupled with target enrichment followed by next-generation sequencing. The method made it possible to obtain efficiently non-duplicated reads mapped to target sequences of interest, and this can achieve deep and reliable sequencing of ancient DNA from typical materials, even though poorly preserved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2013.07.040DOI Listing

Publication Analysis

Top Keywords

ancient dna
12
target enrichment
8
high-throughput sequencing
8
sequencing ancient
8
sequencing
5
dna
5
emulsion pcr-coupled
4
pcr-coupled target
4
enrichment effective
4
effective fishing
4

Similar Publications

A common problem when analyzing ancient DNA (aDNA) data is to identify the species which corresponds to the recovered aDNA sequence(s). The standard approach is to deploy sequence similarity based tools, such as BLAST. However, as aDNA reads may frequently stem from unsampled taxa due to extinction, it is likely that there is no exact match in any database.

View Article and Find Full Text PDF

The ancestral genome's tale University of Chicago Press, 2025. 160 pp.

Science

January 2025

The reviewer is at the Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.

Narratives that invoke ancient DNA must be crafted with care, argues an archaeologist.

View Article and Find Full Text PDF

Building a reliable 16S mini-barcode library of wild bees from Occitania, south-west of France.

Biodivers Data J

January 2025

Dynafor, INRAE, INP, ENSAT, 31326, Castanet Tolosan, France Dynafor, INRAE, INP, ENSAT, 31326 Castanet Tolosan France.

Background: DNA barcoding and metabarcoding are now powerful tools for studying biodiversity and especially the accurate identification of large sample collections belonging to diverse taxonomic groups. Their success depends largely on the taxonomic resolution of the DNA sequences used as barcodes and on the reliability of the reference databases. For wild bees, the barcode sequences coverage is consistently growing in volume, but some incorrect species annotations need to be cared for.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!