Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2013.07.001 | DOI Listing |
Nano Lett
January 2025
Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States.
Ferroelectric HfZrO (HZO) capacitors have been extensively explored for in-memory computing (IMC) applications due to their nonvolatility and back-end-of-line (BEOL) compatible process. Several IMC approaches using resistance and capacitance states in ferroelectric HZO have been proposed for vector-matrix multiplication (VMM), but previous approaches suffer from limited accuracy and reliability. In this work, we propose a promising approach centered on the remanent polarization (P) switching of binary ferroelectric HZO capacitor synapses.
View Article and Find Full Text PDFNanotechnology
January 2025
Kwangwoon University, 20 Kwangwoonro Nowon-Gu Seoul, Nowon-gu, 01897, Korea (the Republic of).
To implement a neuromorphic computing system capable of efficiently processing vast amounts of unstructured data, a significant number of synapse and neuron devices are needed, resulting in increased area demands. Therefore, we developed a nanoscale vertically structured synapse device that supports high-density integration. To realize this synapse device, the interface effects between the resistive switching layer and the electrode were investigated and utilized.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
Research on memristive devices to seamlessly integrate and replicate the dynamic behaviors of biological synapses will illuminate the mechanisms underlying parallel processing and information storage in the human brain, thereby affording novel insights for the advancement of artificial intelligence. Here, an artificial electric synapse is demonstrated on a one-step Mo-selenized MoSe memristor, having not only long-term stable resistive switching characteristics (reset 0.51 ± 0.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
The discovery of moiré physics in two-dimensional (2D) materials has opened new avenues for exploring unique physical and chemical properties induced by intralayer/interlayer interactions. This study reports the experimental observation of moiré patterns in 2D bismuth oxyselenide (BiOSe) nanosheets grown through one-pot chemical reaction methods and a sonication-assisted layer separations technique. Our findings demonstrate that these moiré patterns result from the angular stacking of the nanosheets at various twist angles, leading to the formation of moiré superlattices (MSLs) with distinct periodicities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!