Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The design of hyaluronic acid (HA)-based hydrogel scaffolds to elicit highly controlled and tunable cell response and behavior is a major field of interest in developing tissue engineering and regenerative medicine applications. This review will begin with an overview of the biological context of HA, which is needed to better understand how to engineer cell-matrix interactions in the scaffolds via the incorporation of different types of signals in order to direct and control cell behavior. Specifically, recent methods of incorporating various bioactive, mechanical and spatial signals are reviewed, as well as novel HA modifications and crosslinking schemes with a focus on specificity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903661 | PMC |
http://dx.doi.org/10.1016/j.actbio.2013.07.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!