Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effect of substrate temperature on the wetting and spreading behavior of a UV ink monomer has been studied as a surrogate for the ink on four different substrates: DTC (digital top coat)-coated BOPP (biaxial oriented polypropylene), Flexo-coated BOPP, DTC-coated SGE (semigloss elite) paper, and Flexo-coated SGE paper. Results show that the dynamic contact angles of the monomer decrease exponentially over time after contacting the surface, and the rate of spreading is consistently higher at 95 °C than at 22 °C. This observation indicates that spreading is controlled by the viscosity of the monomer as it decreases with temperature. An anomalous temperature effect is observed for the static contact angle on the DTC-coated BOPP substrate. The static contact angle at 95 °C is significantly larger than that at 22 °C (52° versus 30°). This is counterintuitive, as the surface tension of the monomer is shown to decease with increasing temperature. Microscopy (SEM and AFM) studies suggest that there is little interaction between the DTC coating solution and the BOPP substrate during the fast-drying coating process. This results in a smooth coated surface and, more importantly, voids between the BOPP nanofibers underneath the DTC coating. As the DTC-BOPP substrate is heated to 95 °C, fiber expansions occur. Microscopy results show that nanosized protrusions are formed on the DTC surface. We attribute it to fiber expansions in the vertical direction. Fiber expansions in the lateral direction causes little surface morphology change as the expanded materials only fill the voids laterally between the nanofiber network. We suggest that the protrusions on the surface create strong resistance to the wetting process and pin the monomer drop into a metastable wetting state. This interpretation is supported by the sliding angle and sessile drop height experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la400991y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!