Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We demonstrate an efficiency enhancement of an InP nanowire (NW) axial p-n junction solar cell by cleaning the NW surface. NW arrays were grown with in situ HCl etching on an InP substrate patterned by nanoimprint lithography, and the NWs surfaces were cleaned after growth by piranha etching. We find that the postgrowth piranha etching is critical for obtaining a good solar cell performance. With this procedure, a high diode rectification factor of 10(7) is obtained at ±1 V. The resulting NW solar cell exhibits an open-circuit voltage (Voc) of 0.73 V, a short-circuit current density (Jsc) of 21 mA/cm(2), and a fill factor (FF) of 0.73 at 1 sun. This yields a power conversion efficiency of up to 11.1% at 1 sun and 10.3% at 12 suns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl4016182 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!