Background: It has been demonstrated that angiotensin II (Ang II) participates in either the inhibition or the facilitation of nociceptive transmission depending on the brain area. Neuronal Ang II is locally synthesized not only in the brain, but also in the spinal cord. Though the spinal cord is an important area for the modulation of nociception, the role of spinal Ang II in nociceptive transmission remains unclear. Therefore, in order to elucidate the role of Ang II in nociceptive transmission in the spinal cord, we examined the effect of intrathecal (i.t.) administration of Ang II into mice.
Results: I.t. administration of Ang II produced a behavioral response in mice mainly consisting of biting and/or licking of the hindpaw and the tail along with slight hindlimb scratching directed toward the flank. The behavior induced by Ang II (3 pmol) was dose-dependently inhibited by intraperitoneal injection of morphine (0.1-0.3 mg/kg), suggesting that the behavioral response is related to nociception. The nociceptive behavior was also inhibited dose-dependently by i.t. co-administration of losartan (0.3-3 nmol), an Ang II type 1 (AT1) receptor antagonist, and SB203580 (0.1-1 nmol), a p38 MAPK inhibitor. However, the Ang II type 2 (AT2) receptor antagonist PD123319, the upstream inhibitor of ERK1/2 phosphorylation U0126, and the JNK inhibitor SP600125 had no effect on Ang II-induced nociceptive behavior. Western blot analysis showed that the i.t. injection of Ang II induced phosphorylation of p38 MAPK in the lumbar dorsal spinal cord, which was inhibited by losartan, without affecting ERK1/2 and JNK. Furthermore, we found that AT1 receptor expression was relatively high in the lumbar superficial dorsal horn.
Conclusions: Our data show that i.t. administration of Ang II induces nociceptive behavior accompanied by the activation of p38 MAPK signaling mediated through AT1 receptors. This observation indicates that Ang II may act as a neurotransmitter and/or neuromodulator in the spinal transmission of nociceptive information.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737069 | PMC |
http://dx.doi.org/10.1186/1744-8069-9-38 | DOI Listing |
Extracell Vesicles Circ Nucl Acids
December 2024
Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
The effective management of cancer pain continues to be a challenge because of our limited understanding of cancer pain mechanisms and, in particular, how cancer cells interact with neurons to produce pain. In a study published in , Inyang used a mouse model of human papillomavirus (HPV1)-induced oropharyngeal squamous cell carcinoma to show a role for cancer cell-derived extracellular vesicles (cancer sEVs) in cancer pain. They found that inhibiting the release of sEVs reduced spontaneous and evoked pain behaviors, and that pain produced by sEVs is due to activation of TRPV1 channels.
View Article and Find Full Text PDFeNeuro
January 2025
Department of Biomedical Sciences, University of Guelph
Chronic pain is a debilitative disease affecting 1 in 5 adults globally, and is a major risk factor for anxiety (Goldberg and McGee, 2011; Lurie, DI., 2018). Given the current dearth of available treatments for both individuals living with chronic pain and mental illnesses, there is a critical need for research into the molecular mechanisms involved in order to discover novel treatment targets.
View Article and Find Full Text PDFNeuron
January 2025
State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China. Electronic address:
Gamma-band oscillations (GBOs) in the primary somatosensory cortex (S1) play key roles in nociceptive processing. Yet, one crucial question remains unaddressed: what neuronal mechanisms underlie nociceptive-evoked GBOs? Here, we addressed this question using a range of somatosensory stimuli (nociceptive and non-nociceptive), neural recording techniques (electroencephalography in humans and silicon probes and calcium imaging in rodents), and optogenetics (alone or simultaneously with electrophysiology in mice). We found that (1) GBOs encoded pain intensity independent of stimulus intensity in humans, (2) GBOs in S1 encoded pain intensity and were triggered by spiking of S1 interneurons, (3) parvalbumin (PV)-positive interneurons preferentially tracked pain intensity, and critically, (4) PV S1 interneurons causally modulated GBOs and pain-related behaviors for both thermal and mechanical pain.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.
A fundamental issue in neuroscience is a lack of understanding regarding the relationship between brain function and the white matter architecture that supports it. Individuals with chronic neuropathic pain (NP) exhibit functional abnormalities throughout brain networks collectively termed the "dynamic pain connectome" (DPC), including the default mode network (DMN), salience network, and ascending nociceptive and descending pain modulation systems. These functional abnormalities are often observed in a sex-dependent fashion.
View Article and Find Full Text PDFJ Oral Facial Pain Headache
December 2024
Neuroscience of Emotion Cognition and Nociception Group (NeuroCEN Group), Faculty of Odontology, Complutense University of Madrid, 28040 Madrid, Spain.
The aims of the study are to analyze the influence of pain and no pain expectations on the physiological (electromyography (EMG) and pupillometry) and cognitive (Numerical Rating Scale (NRS)) response to pain. Pain expectation and no pain expectation situations were induced by employing instructional videos. The induction of pain was performed by palpating the masseter with an algometer in a sample of 2 groups: 30 healthy participants (control group) and 30 patients (Temporomandibular disorders (TMD) group) with chronic myofascial pain with referral in the masseter muscle (Diagnostic Criteria for Temporomandibular Dissorders (DC/TMD)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!