Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI:http://dx.doi.org/10.7554/eLife.00953.001.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721249PMC
http://dx.doi.org/10.7554/eLife.00953DOI Listing

Publication Analysis

Top Keywords

sterol homeostasis
12
mevalonate pathway
12
degradation squalene
8
squalene monooxygenase
8
ubiquitin ligase
8
pathway
6
sterol
4
homeostasis requires
4
requires regulated
4
regulated degradation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!