Stable multipartite mutualistic associations require that all partners benefit. We show that a single mutational step is sufficient to turn a symbiotic bacterium from an inedible but host-beneficial secondary metabolite producer into a host food source. The bacteria's host is a "farmer" clone of the social amoeba Dictyostelium discoideum that carries and disperses bacteria during its spore stage. Associated with the farmer are two strains of Pseudomonas fluorescens, only one of which serves as a food source. The other strain produces diffusible small molecules: pyrrolnitrin, a known antifungal agent, and a chromene that potently enhances the farmer's spore production and depresses a nonfarmer's spore production. Genome sequence and phylogenetic analyses identify a derived point mutation in the food strain that generates a premature stop codon in a global activator (gacA), encoding the response regulator of a two-component regulatory system. Generation of a knockout mutant of this regulatory gene in the nonfood bacterial strain altered its secondary metabolite profile to match that of the food strain, and also, independently, converted it into a food source. These results suggest that a single mutation in an inedible ancestral strain that served a protective role converted it to a "domesticated" food source.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767522 | PMC |
http://dx.doi.org/10.1073/pnas.1308199110 | DOI Listing |
Front Plant Sci
January 2025
National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties.
View Article and Find Full Text PDFFood Chem X
January 2025
Research Center for Applied Zoology, National Research and Innovation Agency Republic of Indonesia, P.O. Box 16911, Bogor, Indonesia.
Indonesia, one of the largest tropical forests, offers a diverse range of nectar sources that contribute to the unique characteristics of forest honey. This study aims to investigate physicochemical and antioxidant properties of forest honey from three distinct regions of Indonesia. Key physicochemical parameters include moisture, color, electrical conductivity (EC), total dissolved solids (TDS), total suspended solids (TSS), density, diastase number (DN), hydroxymethylfurfural (HMF), pH, total acidity, ash content, protein content, and reducing sugars.
View Article and Find Full Text PDFSci One Health
November 2024
CR University Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France.
Most biomedical research on animals is based on the handful of the so-called standard model organisms, i.e. laboratory mice, rats or , but the keys to some important biomedical questions may simply not be found in these.
View Article and Find Full Text PDFACS Sustain Resour Manag
January 2025
Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria.
Tremendous quantities of textile waste generated and primarily landfilled annually represent a huge risk of contaminating the environment, together with loss of valuable resources. Especially, blended fabrics further pose a challenge for recycling and valorization strategies, while enzymatic hydrolysis offers a highly specific and environmentally friendly solution. In this study, we demonstrate that proteases specifically hydrolyze the wool components in blends with polyester, allowing recovery of pure polyester fibers as well as amino acids and peptides as platform molecules for further valorization.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210.
In this study, a thermostable β-galactosidase from OSU-PECh-4A has been isolated through diafiltration and size-exclusion chromatography. The enzyme consists of a heterodimer with a molecular mass of 110 kDa, with a small and large subunit of 36 and 74 kDa, respectively. The Michaelis constant (K) and maximum velocity (V) values for lactose and -nitrophenyl-β-d-galactopyranoside (NPG) hydrolysis were, respectively, 29.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!