We report the results of highly sensitive transmission X-ray scattering measurements performed at the Advanced Photon Source, Argonne National Laboratory, on nearly fully dense high-purity amorphous-silicon (a-Si) samples for the purpose of determining their degree of hyperuniformity. A perfectly hyperuniform structure has complete suppression of infinite-wavelength density fluctuations, or, equivalently, the structure factor S(q→0) = 0; the smaller the value of S(0), the higher the degree of hyperuniformity. Annealing was observed to increase the degree of hyperuniformity in a-Si where we found S(0) = 0.0075 (±0.0005), which is significantly below the computationally determined lower bound recently suggested by de Graff and Thorpe [de Graff AMR, Thorpe MF (2010) Acta Crystallogr A 66(Pt 1):22-31] based on studies of continuous random network models, but consistent with the recently proposed nearly hyperuniform network picture of a-Si. Increasing hyperuniformity is correlated with narrowing of the first diffraction peak and extension of the range of oscillations in the pair distribution function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746861 | PMC |
http://dx.doi.org/10.1073/pnas.1220106110 | DOI Listing |
J Phys Condens Matter
April 2024
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America.
Disorder hyperuniformity is a recently discovered exotic state of many-body systems that possess a hidden order in between that of a perfect crystal and a completely disordered system. Recently, this novel disordered state has been observed in a number of quantum materials including amorphous 2D graphene and silica, which are endowed with unexpected electronic transport properties. Here, we numerically investigate 1D atomic chain models, including perfect crystalline, disordered stealthy hyperuniform (SHU) as well as randomly perturbed atom packing configurations to obtain a quantitative understanding of how the unique SHU disorder affects the vibrational properties of these low-dimensional materials.
View Article and Find Full Text PDFJ Chem Phys
January 2024
Department of Chemistry, Department of Physics, Princeton Materials Institute, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.
The knowledge of exact analytical functional forms for the pair correlation function g2(r) and its corresponding structure factor S(k) of disordered many-particle systems is limited. For fundamental and practical reasons, it is highly desirable to add to the existing database of analytical functional forms for such pair statistics. Here, we design a plethora of such pair functions in direct and Fourier spaces across the first three Euclidean space dimensions that are realizable by diverse many-particle systems with varying degrees of correlated disorder across length scales, spanning a wide spectrum of hyperuniform, typical nonhyperuniform, and antihyperuniform ones.
View Article and Find Full Text PDFNat Comput Sci
February 2023
Intelligent Wave Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea.
Network science provides a powerful tool for unraveling the complexities of social, technological and biological systems. Constructing networks using wave phenomena is also of great interest in devising advanced hardware for machine learning, as shown in optical neural networks. Although most wave-based networks have employed static network models, the impact of evolving models in network science provides strong motivation to apply dynamical network modeling to wave physics.
View Article and Find Full Text PDFPhys Rev E
October 2023
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Disordered hyperuniform materials are an emerging class of exotic amorphous states of matter that endow them with singular physical properties, including large isotropic photonic band gaps, superior resistance to fracture, and nearly optimal electrical and thermal transport properties, to name but a few. Here we generalize the Fourier-space-based numerical construction procedure for designing and generating digital realizations of isotropic disordered hyperuniform two-phase heterogeneous materials (i.e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
Vegetation Turing patterns play a critical role in the ecological functioning of arid and semi-arid ecosystems. However, the long-range spatial features of these patterns have been neglected compared to short-range features like patch shape and spatial wavelength. Drawing inspiration from hyperuniform structures in material science, we find that the arid and semi-arid vegetation Turing pattern exhibits long-range dispersion similar to hyperuniformity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!