Vessel anastomosis is important in tumor angiogenesis as well as for vascularization therapy for ischemia and other diseases. We report here the development of a color-coded imaging model that can visualize the anastomosis between blood vessels of red fluorescent protein (RFP)-expressing vessels in vascularized Gelfoam® previously transplanted into RFP transgenic mice and then re-transplanted into nestin-driven green fluorescent protein (ND-GFP) mice where nascent blood vessels express GFP. Gelfoam® was initially transplanted subcutaneously in the flank of transgenic RFP nude mice. Skin flaps were made at 14 days after transplantation of Gelfoam® to allow observation of vascularization of the Gelfoam® using confocal fluorescence imaging. The implanted Gelfoam® became highly vascularized with RFP vessels. Fourteen days after transplantation into RFP transgenic nude mice, the Gelfoam® was removed and re-transplanted into the subcutis on the flank of ND-GFP transgenic nude mice in which nascent blood vessels express GFP. Skin flaps were made and anastomosis between the GFP-expressing nascent blood vessels of ND-GFP transgenic nude mice and RFP blood vessels in the Gelfoam® was imaged 14 and 21 days after re-transplantation. The results presented in this report indicate a possible mechanism for tumor angiogenesis and suggest a new paradigm of therapeutic revascularization of ischemic organs requiring new blood vessels and in other diseases.
Download full-text PDF |
Source |
---|
J Am Acad Orthop Surg Glob Res Rev
January 2025
From the Department of Anatomy, School of Medicine, Marmara University, Basibuyuk Yolu, Maltepe, Istanbul, Turkey (Dr. Ismailoglu, Dr. Sehirli, and Dr. Ayingen); the Department of Anatomy, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Turkey (Dr. Bayramoglu and Dr. Savasan); and the Department of Orthopedic Surgery, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Turkey (Dr. Kocaoglu).
Purpose: The surgical approach for midfoot injuries classically requires dual dorsal incision and identification of the neurovascular structures that are susceptible to injury during the surgery. The aim of this study was to map the topographic anatomy of the dorsum of the foot along with tarsal joints for the dorsal approach of midfoot surgery that would facilitate the surgery and minimize the risk of neurovascular injuries for surgeons who specially focus on foot and ankle injuries.
Methods: The dorsum of the foot was evaluated in 12 feet injected with latex containing a red colorant to visualize the arterial vessels.
Arterial compliance (AC) is an important cardiovascular parameter characterizing mechanical properties of arteries. AC is significantly influenced by arterial wall structure and vasomotion, and it markedly influences cardiac load. A new method, based on a two-element Windkessel model, has been recently proposed for estimating AC as the ratio of the time constant T of the diastolic blood pressure decay and peripheral vascular resistance derived from clinically available stroke volume measurements and selected peripheral blood pressure parameters which are less prone to peripheral distortions.
View Article and Find Full Text PDFPhysiol Res
December 2024
Children's Heart Center, Second Faculty of Medicine, Charles University and Motol University Hospital, Praha, Czech Republic.
Although the heart atria have a lesser functional importance than the ventricles, atria play an important role in the pathophysiology of heart failure and supraventricular arrhythmias, particularly atrial fibrillation. In addition, knowledge of atrial morphology recently became more relevant as cardiac electrophysiology and interventional procedures in the atria gained an increasingly significant role in the clinical management of patients with heart disease. The atrial chambers are thin-walled, and several vessels enter at the level of the atria.
View Article and Find Full Text PDFClin Microbiol Rev
January 2025
Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
SUMMARY is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels.
View Article and Find Full Text PDFCardiol Rev
January 2025
From the Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX.
The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!