Extracellular adenosine, a key regulator of physiology and immune cell function that is found at elevated levels in neonatal blood, is generated by phosphohydrolysis of adenine nucleotides released from cells and catabolized by deamination to inosine. Generation of adenosine monophosphate (AMP) in blood is driven by cell-associated enzymes, whereas conversion of AMP to adenosine is largely mediated by soluble enzymes. The identities of the enzymes responsible for these activities in whole blood of neonates have been defined in this study and contrasted to adult blood. We demonstrate that soluble 5'-nucleotidase (5'-NT) and alkaline phosphatase (AP) mediate conversion of AMP to adenosine, whereas soluble adenosine deaminase (ADA) catabolizes adenosine to inosine. Newborn blood plasma demonstrates substantially higher adenosine-generating 5'-NT and AP activity and lower adenosine-metabolizing ADA activity than adult plasma. In addition to a role in soluble purine metabolism, abundant AP expressed on the surface of circulating neonatal neutrophils is the dominant AMPase on these cells. Plasma samples from infant observational cohorts reveal a relative plasma ADA deficiency at birth, followed by a gradual maturation of plasma ADA through infancy. The robust adenosine-generating capacity of neonates appears functionally relevant because supplementation with AMP inhibited whereas selective pharmacologic inhibition of 5'-NT enhanced Toll-like receptor-mediated TNF-α production in neonatal whole blood. Overall, we have characterized previously unrecognized age-dependent expression patterns of plasma purine-metabolizing enzymes that result in elevated plasma concentrations of anti-inflammatory adenosine in newborns. Targeted manipulation of purine-metabolizing enzymes may benefit this vulnerable population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779727PMC
http://dx.doi.org/10.1074/jbc.M113.484212DOI Listing

Publication Analysis

Top Keywords

neonatal blood
12
adenosine
9
5'-nt alkaline
8
alkaline phosphatase
8
adenosine deaminase
8
extracellular adenosine
8
conversion amp
8
amp adenosine
8
plasma ada
8
purine-metabolizing enzymes
8

Similar Publications

Background: Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCADD) is a rare autosomal recessive disease associated with variants in the gene.

Methods: In December 2021, a neonate with VLCADD was identified via newborn screening in Xuzhou, China. Genetic testing and genetic family verification were performed via high-throughput sequencing combined with Sanger sequencing.

View Article and Find Full Text PDF

A worldwide issue, vitamin D deficiency affects pregnant mothers and babies everywhere, including Indonesia. It involves the adaptive immune system by controlling the production of pro-and anti-inflammatory cytokines and the balance between humoral (Th2) and cell-mediated (Th1) immunity. The aim of this study was to investigate the relationship between vitamin D and the cytokines IL-6 and IL-10 in infants.

View Article and Find Full Text PDF

Sepsis is a systemic infection that significantly causes morbidity and mortality among neonates, which is associated with immature immune response. Variations in the tumor necrosis factor-alpha gene () -308G/A may be linked to neonatal sepsis mortality by modulating interleukins (ILs) involved in the immune response cascade, such as IL-6. The aim of this study was to investigate the association between -308G/A gene variation and IL-6 level with mortality of neonatal sepsis.

View Article and Find Full Text PDF

Background: Gestational Diabetes Mellitus (GDM) prevalence is rising worldwide, but optimal dietary strategies remain unclear. The eMOM pilot RCT compared a plant-protein rich Healthy Nordic Diet (HND) and a moderately carbohydrate restricted diet (MCRD) and their potential effects on time in glucose target range (≤ 7.8 mmol/L, %TIR), and on newborn body composition.

View Article and Find Full Text PDF

Background: To assess the value of combined Monocyte Distribution Width (MDW) and Procalcitonin (PCT) detection in diagnosing and predicting neonatal sepsis outcomes.

Methods: This retrospective study, conducted from January 2022 to December 2023.A retrospective analysis of 39 neonatal sepsis and 30 non-infectious systemic inflammatory response syndrome (SIRS) cases was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!