Reconfigurable infrared camouflage coatings from a cephalopod protein.

Adv Mater

Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697, (USA).

Published: October 2013

In nature, cephalopods employ unique dynamic camouflage mechanisms. Herein, we draw inspiration from self-assembled structures found in cephalopods to fabricate tunable biomimetic camouflage coatings. The reflectance of these coatings is dynamically modulated between the visible and infrared regions of the electromagnetic spectrum in situ. Our studies represent a crucial step towards reconfigurable and disposable infrared camouflage for stealth applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201301472DOI Listing

Publication Analysis

Top Keywords

infrared camouflage
8
camouflage coatings
8
reconfigurable infrared
4
camouflage
4
coatings cephalopod
4
cephalopod protein
4
protein nature
4
nature cephalopods
4
cephalopods employ
4
employ unique
4

Similar Publications

In this study, we used desert soil from Gansu, China, as a sample to propose a method for designing hyperspectral stealth coatings against desert soil backgrounds within the spectral range of 400-2500 nm, and the corresponding coating was prepared. Firstly, the correlation between the composition and typical spectral detected characteristics of the desert soil was systematically analyzed. It was found that the color and the spectrum of the desert soil in the range of 400-1000 nm were influenced by different types of iron oxides.

View Article and Find Full Text PDF

Hierarchical 3D FeCoNi Alloy/CNT @ Carbon Nanofiber Sponges as High-Performance Microwave Absorbers with Infrared Camouflage.

Materials (Basel)

December 2024

Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.

Microwave absorbers with infrared camouflage are highly desirable in military fields. Self-supporting 3D architectures with tailorable shapes, composed of FeCoNi alloy/carbon nanotubes (CNTs) @ carbon nanofibers (CNFs), were fabricated in this study. On the one hand, multiple loss mechanisms were introduced into the high-elastic sponges.

View Article and Find Full Text PDF

Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth.

Nanomicro Lett

December 2024

School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.

As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization.

View Article and Find Full Text PDF

Multispectral camouflage materials that provide adaptable features across a wide spectrum, from visible light to radar frequencies, play a vital role in sophisticated multi-band electromagnetic (EM) applications. However, conventional single-band stealth is difficult to align with the growing demand for multi-band compatibility and intelligent adaptation. Herein, we report the design and synthesis of cephalopod-inspired MXene-integrated cholesteric liquid crystal elastomers (MXene-CLCEs) with multispectral camouflage capability, which was fabricated through in situ thiol-acrylate Michael addition and free-radical photopolymerization of CLCE precursor and isocyanate-mediated robust covalent chemical bonding of MXene nanocoating at the interface.

View Article and Find Full Text PDF

Modern detection technology has driven camouflage technology toward multispectral compatibility and dynamic regulation. However, developing such stealth technologies is challenging due to different frequency-band principles. Here, this work proposes a design concept for a fluid-actuated multispectral compatible smart stealth device that employs a deformable mechanochromic layer/elastomer with a channeled dielectric layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!