Spinal muscular atrophy (SMA) is a lethal neurodegenerative disease specifically affecting spinal motor neurons. SMA is caused by the homozygous deletion or mutation of the survival of motor neuron 1 (SMN1) gene. The SMN protein plays an essential role in the assembly of spliceosomal ribonucleoproteins. However, it is still unclear how low levels of the ubiquitously expressed SMN protein lead to the selective degeneration of motor neurons. An additional role for SMN in the regulation of the axonal transport of mRNA-binding proteins (mRBPs) and their target mRNAs has been proposed. Indeed, several mRBPs have been shown to interact with SMN, and the axonal levels of few mRNAs, such as the β-actin mRNA, are reduced in SMA motor neurons. In this study we have identified the β-actin mRNA-binding protein IMP1/ZBP1 as a novel SMN-interacting protein. Using a combination of biochemical assays and quantitative imaging techniques in primary motor neurons, we show that IMP1 associates with SMN in individual granules that are actively transported in motor neuron axons. Furthermore, we demonstrate that IMP1 axonal localization depends on SMN levels, and that SMN deficiency in SMA motor neurons leads to a dramatic reduction of IMP1 protein levels. In contrast, no difference in IMP1 protein levels was detected in whole brain lysates from SMA mice, further suggesting neuron specific roles of SMN in IMP1 expression and localization. Taken together, our data support a role for SMN in the regulation of mRNA localization and axonal transport through its interaction with mRBPs such as IMP1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906212 | PMC |
http://dx.doi.org/10.1002/dneu.22111 | DOI Listing |
Am J Physiol Cell Physiol
December 2024
Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
Amyotrophic lateral sclerosis (ALS) is characterized by dysfunction and loss of upper and lower motor neurons. Several studies have identified structural and functional alterations in the motor neurons before the manifestation of symptoms, yet the underlying cause of such alterations and how they contribute to the progressive degeneration of affected motor neuron networks remain unclear. Importantly, the short and long-term spatiotemporal dynamics of neuronal network activity make it challenging to discern how ALS-related network reconfigurations emerge and evolve.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy.
The development of ground-breaking Survival Motor Neuron (SMN) replacement strategies has revolutionized the field of Spinal Muscular Atrophy (SMA) research. However, the limitations of these therapies have now become evident, highlighting the need for the development of complementary targets beyond SMN replacement. To address these challenges, here we explored, in in vitro and in vivo disease models, Stathmin-2 (STMN2), a neuronal microtubule regulator implicated in neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS), as a novel SMN-independent target for SMA therapy.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
Anhui Provincial Center for Neural Regeneration Technology and New Medical Materials Engineering Research, Bengbu Medical University, Bengbu 233000, China.
Objectives: To investigate the role of mitochondrial autophagy disorder caused by deletion of E3 ubiquitin ligase Parkin in neuroinflammation in a mouse model of MPTP-induced Parkinson's disease (PD).
Methods: Wild-type (WT) male C57BL/6 mice and Parkin mice were given intraperitoneal injections with MPTP or PBS for 5 consecutive days, and the changes in motor behaviors of the mice were observed using open field test. The effects of Parkin deletion on PD development and neuroinflammation were evaluated using immunofluorescence and Western blotting.
Hum Gene Ther
December 2024
Laboratoire des Maladies Neurodégénératives, MIRCen Institute, Fontenay-aux-Roses, France.
Worldwide, thousands of male patients who carry ATP Binding Cassette Subfamily D Member 1 () mutations develop adrenomyeloneuropathy (AMN) in mid-adulthood, a debilitating axonopathy of the spinal cord. Today AAV gene therapy brings the most hope for this orphan disease. We previously reported that an AAV9-MAG- vector injected intravenously in the neonatal period prevented the disease in 2-year-old mice, the AMN mouse model.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
Neural stem cell (NSCs) transplantation is a promising therapeutic strategy for spinal cord injury (SCI), but its efficacy is greatly limited by the local inhibitory microenvironment. In this study, based on l-arginine (l-Arg)-loaded mesoporous hollow cerium oxide (AhCeO) nanospheres, we constructed an injectable composite hydrogel (AhCeO-Gel) with microenvironment modulation capability. AhCeO-Gel protected NSCs from oxidative damage by eliminating excess reactive oxygen species while continuously delivering Nitric Oxide to the lesion of SCI in a pathological microenvironment, the latter of which effectively promoted the neural differentiation of NSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!