Oriental lacquer has been used in Asian countries for thousands of years as a durable and aesthetic coating material for its adhesive, consolidating, protective and decorative properties. Although these objects are made from an unusual material in Occident, Western museum collections host many lacquerwares. Curators, restorers and scientists are daily confronted with questions of their conservation and their alteration. The characterization of their conservation state is usually assessed through visual observations. However deterioration often starts at the microscopic level and cannot be detected by a simple visual inspection. Often, ageing and deterioration of artworks are connected to physical, mechanical and chemical transformations. Thus new insight into alteration of lacquer involves the monitoring of macro-, microscopic and molecular modifications, and this can be assessed from physico-chemical measurements. Non-invasive (microtopography and Scanning Electron Microscopy - SEM) and micro-invasive (infrared micro-spectroscopy using a synchrotron source - SR-μFTIR) investigations were performed to study the degradation processes of lacquers and evaluate their level of alteration. In particular, spectral decomposition and fitting procedure were performed in the 1820-1520 cm(-1) region to follow the shift of the C=O and C=C band positions during lacquer ageing. The present work proves the potential of this physico-chemical approach in conservation studies of lacquers and in the quantification of the state of alteration. It evidences chemical phenomena of alteration such as oxidation and decomposition of a lacquer polymeric network. It also demonstrates for the first time the degradation front of artificially aged lacquer and the chemical imaging of a more than 2000 years old archaeological lacquer by using SR-μFTIR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3an00608e | DOI Listing |
J Pharm Biomed Anal
December 2024
Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China. Electronic address:
Pharmacologic intervention in chronic heart failure (HF) with renal insufficiency is one of the clinical challenges due to the fact that the mechanisms of cardio-renal interactions in chronic heart failure (CHF) progressing have not been fully revealed. In this paper, C57BL/6 mice were applied thoracic aortic narrowing surgery to establish pressure overload CHF model. Cardiac function, serum markers, renal pathologic changes and kidney metabolism were analyzed at 4th, 8th, 12th, and 16th week after surgery respectively to evaluate the heart-Kidney pathologic overlap.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
Urushiol is recognized as a sustainable coating material with superior properties; however, it faces significant challenges in applications such as petrochemicals and marine engineering due to surface oil contamination. This study aimed to enhance the cleanability of urushiol-based coatings through hydrophilic modification. Polyethylene glycol monooleate (PEGMO) was identified as an appropriate hydrophilic macromonomer and utilized as a modifier to develop a novel urushiol-based coating, termed P(U-PEGMO), via thermal curing.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Mechanical Engineering, Rice University, Houston, Texas 77005, United States.
Patterned solid surfaces with wettability contrast can enhance liquid transport for applications such as electronics thermal management, self-cleaning, and anti-icing. However, prior work has not explored easy and scalable blade-cut masking to impart topography patterned wettability contrast on aluminum (Al), even though Al surfaces are widely used for thermal applications. Here, we demonstrate mask-enabled topography contrast patterning and quantify the resulting accuracy of the topographic pattern resolution, spatial variations in surface roughness, wettability, drop size distribution during dropwise condensation, and thermal emissivity of patterned Al surfaces.
View Article and Find Full Text PDFPLoS One
December 2024
College of Petrochemical Engineering, Zhangzhou Institute of Technology, Zhangzhou, China.
To expand the potential applications of raw lacquer, snowman-like polystyrene (PS)-urushiol lanthanum (ULa) Janus composite particles were synthesized by emulsion swelling-assisted protrusion from PS/ULa core-shell composite microspheres. The morphology and chemical composition of the PS/ULa composite microspheres and the PS-ULa Janus composite particles were investigated with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR). The PS-ULa Janus particles were compartmentalized into two parts, each with a different morphology and chemical composition.
View Article and Find Full Text PDFCutis
October 2024
Mykayla Sandler and Dr. Yu are from the Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston. Ivan Rodriguez and Dr. Adler are from the Keck School of Medicine, University of Southern California, Los Angeles. Dr. Adler is from the Department of Dermatology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!