Background: As important mediators of solute transport at the blood-brain and blood-cerebrospinal fluid barriers, ATP-binding cassette (ABC) transporters (including ABCB1, ABCC1, and ABCC2), impact the bioavailability of drugs and endogenous substrates in the brain. While several ABCB1, ABCC1, and ABCC2 single nucleotide polymorphisms (SNPs) have been identified, their impact on outcome after traumatic brain injury (TBI) is unknown.

Hypothesis: ABCB1, ABCC1, and ABCC2 SNPs are associated with Glasgow Outcome Scale (GOS) score after TBI.

Methods: DNA samples from 305 adult patients with severe TBI (Glasgow Coma Scale, GCS score ≤ 8) were genotyped for tagging SNPs of ABCB1 (rs1045642; rs1128503), ABCC1 (rs212093; rs35621; rs4148382), and ABCC2 (rs2273697). For each SNP, patients were dichotomized based on presence of variant allele for multivariate analysis to determine associations with GOS assigned at 6 months adjusting for GCS, Injury Severity score, age, and patient sex.

Results: For ABCB1 rs1045642, patients homozygous for the T allele were less likely to be assigned poor outcome versus those possessing the C allele [CT/CC; odds of unfavorable GOS = 0.71(0.55-0.92)]. For ABCC1 rs4148382, patients homozygous for the G allele were less likely to be assigned poor outcome versus those possessing the A allele [AG/AA; odds of unfavorable GOS = 0.73(0.55-0.98)].

Conclusions: In this single-center study, patients homozygous for the T allele of ABCB1 rs1045642 or the G allele of ABCC1 rs4148382 were found to have better outcome after severe TBI. Further study is necessary to replicate these very preliminary findings and to determine whether these associations are due to central nervous system bioavailability of ABC transporter drug substrates commonly used in the management of TBI, brain efflux of endogenous solutes, or both.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332629PMC
http://dx.doi.org/10.1007/s12028-013-9881-7DOI Listing

Publication Analysis

Top Keywords

abcb1 abcc1
12
abcc1 abcc2
12
abcb1 rs1045642
12
patients homozygous
12
homozygous allele
12
atp-binding cassette
8
outcome traumatic
8
traumatic brain
8
brain injury
8
severe tbi
8

Similar Publications

Expression of ABCB1, ABCC1, and LRP in Mesenchymal Stem Cells from Human Amniotic Fluid and Bone Marrow in Culture-Effects of In Vitro Osteogenic and Adipogenic Differentiation.

Int J Mol Sci

January 2025

Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil.

Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into various lineages. They have also the potential to protect themselves against harmful stimuli to maintain their functional integrity. Drug resistance-related transporters such as ABCB1 (P-glycoprotein; P-gp), ABCC1 (MRP1; multidrug resistance-related Protein 1), and LRP (lung resistance protein) may protect MSCs against toxic substances such as chemotherapeutic agents.

View Article and Find Full Text PDF

Enhancement of Doxorubicin Efficacy by Bacopaside II in Triple-Negative Breast Cancer Cells.

Biomolecules

January 2025

Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia.

Background: Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options and high resistance to chemotherapy. Doxorubicin is commonly used, but its efficacy is limited by variable sensitivity and resistance. Bacopaside II, a saponin compound, has shown anti-cancer potential.

View Article and Find Full Text PDF

The efflux pump ABCC1/MRP1 constitutively restricts PROTAC sensitivity in cancer cells.

Cell Chem Biol

December 2024

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria. Electronic address:

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting "undruggable" proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored.

View Article and Find Full Text PDF

Breast cancer is a leading cause of cancer-related deaths among women globally. It is imperative to explore novel biomarkers to predict breast cancer treatment response as well as progression. Here, we collected six breast cancer samples and paired normal tissues for high-throughput sequencing.

View Article and Find Full Text PDF

Breast cancer is one of the most common cancers among women. Nowadays postoperative adjuvant chemotherapy is the mainstay for clinical treatment of breast cancer. However, the emergence of multidrug resistance (MDR) in breast cancer has become a main reason for the failure of clinical chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!