At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconhyd.2013.06.009 | DOI Listing |
Sci Rep
January 2025
Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China.
The pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remains unclear due to the complexity of its etiology. The emerging field of the epitranscriptome has shown significant promise in advancing the understanding of disease pathogenesis and developing new therapeutic approaches. Recent research has demonstrated that N4-acetylcytosine (ac4C), an RNA modification within the epitranscriptome, is implicated in progression of various diseases.
View Article and Find Full Text PDFSci Rep
January 2025
British Geological Survey, London, UK.
This study demonstrates that machine learning from seismograms, obtained from commonly deployed seismometers, can identify the early stages of slope failure in the field. Landslide hazards negatively impact the economy and public through disruption, damage of infrastructure and even loss of life. Triggering factors leading to landslides are broadly understood, typically associated with rainfall, geological conditions and steep topography.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
STAMI, National Institute of Occupational Health, Oslo, Norway.
This study aimed to test the use of Rietveld refinement on respirable aerosol samples to determine the phase of respirable crystalline silica (RCS) and other minerals. The results from the Rietveld refinement were compared to an external standard method and gravimetrical measurements. Laboratory samples consisting of α-quartz, feldspar, and calcite with variable proportions and total mass loadings were made and analyzed using the NIOSH 7500 , followed by Rietveld refinement.
View Article and Find Full Text PDFJ Infus Nurs
January 2025
Author Affiliations: Faculty of Nursing, Department of Nursing, Josai International University, Chiba, Japan (Mss Kitada and Tateno; Drs Ninomiya and Kabashim); Faculty of Pharmaceutical Sciences, Department of Medical Pharmacy, Josai International University, Chiba, Japan (Dr Yamamura); Behavioral Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Hori).
Age-related physiological changes affect various aspects of peripheral intravenous catheter (PIVC) cannulation. However, the characteristics of PIVCs, especially in older patients, have been poorly investigated. In the current cross-sectional observational study, PIVC sizes, PIVC sites, the number of attempts until successful insertion, and the degree of venodilation upon insertion among hospital inpatients aged ≥65 years were investigated, along with measurements of the vessel diameter and depth using ultrasound.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!