PepBind: a comprehensive database and computational tool for analysis of protein-peptide interactions.

Genomics Proteomics Bioinformatics

Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605014, India.

Published: August 2013

Protein-peptide interactions, where one partner is a globular protein (domain) and the other is a flexible linear peptide, are key components of cellular processes predominantly in signaling and regulatory networks, hence are prime targets for drug design. To derive the details of the protein-peptide interaction mechanism is often a cumbersome task, though it can be made easier with the availability of specific databases and tools. The Peptide Binding Protein Database (PepBind) is a curated and searchable repository of the structures, sequences and experimental observations of 3100 protein-peptide complexes. The web interface contains a computational tool, protein inter-chain interaction (PICI), for computing several types of weak or strong interactions at the protein-peptide interaction interface and visualizing the identified interactions between residues in Jmol viewer. This initial database release focuses on providing protein-peptide interface information along with structure and sequence information for protein-peptide complexes deposited in the Protein Data Bank (PDB). Structures in PepBind are classified based on their cellular activity. More than 40% of the structures in the database are found to be involved in different regulatory pathways and nearly 20% in the immune system. These data indicate the importance of protein-peptide complexes in the regulation of cellular processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357787PMC
http://dx.doi.org/10.1016/j.gpb.2013.03.002DOI Listing

Publication Analysis

Top Keywords

protein-peptide complexes
12
computational tool
8
protein-peptide
8
protein-peptide interactions
8
interactions protein-peptide
8
cellular processes
8
protein-peptide interaction
8
pepbind comprehensive
4
database
4
comprehensive database
4

Similar Publications

Introduction: Molecular recognition features (MoRFs) are regions in protein sequences that undergo induced folding upon binding partner molecules. MoRFs are common in nature and can be predicted from sequences based on their distinctive sequence signatures.

Areas Covered: We overview twenty years of progress in the sequence-based prediction of MoRFs which resulted in the development of 25 predictors of MoRFs that interact with proteins, peptides and lipids.

View Article and Find Full Text PDF

Cellular signaling networks are modulated by multiple protein-protein interaction domains that coordinate extracellular inputs and processes to regulate cellular processes. Several of these domains recognize short linear motifs, or SLiMs, which are often highly conserved and are closely regulated. One such domain, the Src homology 3 (SH3) domain, typically recognizes proline-rich SLiMs and is one of the most abundant SLiM-binding domains in the human proteome.

View Article and Find Full Text PDF

In Silico Design of Peptide Inhibitors Targeting HER2 for Lung Cancer Therapy.

Cancers (Basel)

November 2024

Center of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 22254, Saudi Arabia.

Background/objectives: Human epidermal growth factor receptor 2 (HER2) is overexpressed in several malignancies, such as breast, gastric, ovarian, and lung cancers, where it promotes aggressive tumor proliferation and unfavorable prognosis. Targeting HER2 has thus emerged as a crucial therapeutic strategy, particularly for HER2-positive malignancies. The present study focusses on the design and optimization of peptide inhibitors targeting HER2, utilizing machine learning to identify and enhance peptide candidates with elevated binding affinities.

View Article and Find Full Text PDF

Integrated computational characterization of valosin-containing protein double-psi β-barrel domain: Insights into structural stability, binding mechanisms, and evolutionary significance.

Int J Biol Macromol

December 2024

Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India. Electronic address:

Valosin-containing protein (VCP) plays a crucial role in various cellular processes, yet the molecular mechanisms and structural dynamics of its double-psi β-barrel (DPBB) domain, particularly in human, remain insufficiently explored. While previous studies have characterized the VCP_DPBB domain in other organisms, such as thermoplasma acidophilum and methanopyrus kandleri, its evolutionary conservation, binding potential, and stability in human require further investigation. To address this gap, we first employed all-atom molecular dynamics (AAMD) simulations to examine the structural dynamics of the human VCP_DPBB domain.

View Article and Find Full Text PDF

Carfilzomib is a tetrapeptide epoxyketone that has shown potential clinical outcomes in the treatment of multiple myeloma. However, inaccuracies in quantifying such peptide drug products have arisen due to poor stability, low solubility, time-consuming techniques, complex physicochemical properties, and use of non-green solvents with less recyclability. This provides a substantial urge to develop an ecological and sensitive analytical method for quantifying peptide drugs from matrix formulation and biological samples in early as well as lateral stages of product development in pharma industries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!