Mobility of polyaromatic hydrocarbons (PAHs) in soil in the presence of carbon nanotubes.

Ecotoxicol Environ Saf

Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Box 41163, Lubbock, TX 79409-1163, USA.

Published: October 2013

Being a potential risk to the environment, a fate study of carbon nanotube (CNT) in the environment is urgently needed. A study of CNT impacts on the bioavailability of other conventional contaminants in a terrestrial system is particularly rare. This study explored PAH leaching behaviors in the presence of CNTs with column leaching tests. Four PAHs (Naphthalene, fluorene, phenanthrene, and pyrene), three CNTs (f-SWNTs, MWNTs, f-MWNTs), and a sandy loam soil were involved in this study. We found that at a concentration of 5mg/g, CNTs could significantly retain PAHs in soil. Such a strong PAH retention was caused by low mobilities of CNTs and their strong PAH sorption capacities. This study illustrated that the properties of both sorbents (e.g. available surface area and micropore volume) and sorbates (e.g. hydrophobicity and molecular volume) influenced the mobility of PAHs in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2013.07.005DOI Listing

Publication Analysis

Top Keywords

pahs soil
12
strong pah
8
study
5
mobility polyaromatic
4
polyaromatic hydrocarbons
4
pahs
4
hydrocarbons pahs
4
soil
4
soil presence
4
presence carbon
4

Similar Publications

In situ remediation of oil-contaminated soils by ozonation: Experimental study and numerical modeling.

Chemosphere

January 2025

Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504, Patras, Greece. Electronic address:

The goal of the present work is to quantify the performance of ozonation as a method for the in situ remediation of soils polluted at varying degree with different types of hydrocarbons, and assess its applicability, in terms of remediation efficiency, cost factors, and environmental impacts. Ozonation tests are conducted on dry soil beds, for three specific cases: sandy soil contaminated with low, moderate and high concentration of a non-aqueous phase liquid (NAPL) consisting of equal concentrations of n-decane, n-dodecane, and n-hexadecane; sandy soil polluted with diesel fuel; oil-drilling cuttings (ODC). The transient changes of the concentration of the total organic carbon (TOC), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and soluble chemical oxygen demand (SCOD) in soil and carbon dioxide (CO), carbon monoxide (CO), volatile organic compounds (VOCs), and ozone (O) in exhaust gases are recorded.

View Article and Find Full Text PDF

Although bioremediation is considered the most environmentally friendly and sustainable technique for remediating contaminated soil and water, it is most effective when combined with physicochemical methods, which allow for the preliminary removal of large quantities of pollutants. This allows microorganisms to efficiently eliminate the remaining contaminants. In addition to requiring the necessary genes and degradation pathways for specific substrates, as well as tolerance to adverse environmental conditions, microorganisms may perform below expectations.

View Article and Find Full Text PDF

Recently, the activation of chlorine dioxide (ClO) by metal(oxide) for soil remediation has gained notable attention. However, the related activation mechanisms are still not clear. Herein, the variation of iron species and ClO, the generated reactive oxygen species, and the toxicity of the degradation intermediates were explored and evaluated with nanoscale zero-valent iron (nFe) being employed to activate ClO for soil polycyclic aromatic hydrocarbon (PAH) removal.

View Article and Find Full Text PDF

This paper developed an efficient microbial activator formula and conducted an in-depth study on its efficacy and mechanism in promoting the degradation of petroleum hydrocarbons in oil-contaminated soil. A 60-day microbial remediation experiment conducted on oily soil revealed that the microbial activators significantly boosted the activities of dehydrogenase and catalase, subsequently speeding up the degradation of petroleum hydrocarbons in the soil. The overall degradation rate reached as high as 71.

View Article and Find Full Text PDF

This study evaluates atmospheric polycyclic aromatic hydrocarbon (PAH) concentrations in a semi-urban area, Görükle, Turkey, from June 2021 to February 2022. The average concentration of ∑16 PAHs was 24.85 ± 19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!