Psychostimulants, including amphetamine (AMPH), exert robust arousal-enhancing, reinforcing and locomotor-activating effects. These behavioural actions involve drug-induced elevations in extracellular norepinephrine (NE) and dopamine (DA) within a variety of cortical and subcortical regions. The lateral hypothalamic area (LHA), including the lateral hypothalamus proper, perifornical area and adjacent dorsomedial hypothalamus, is implicated in appetitive- and arousal-related processes. The LHA is innervated by both NE and DA projections and systemically administered AMPH has been demonstrated to activate LHA neurons. Combined, these and other observations suggest the LHA may be a site of action in the behavioural effects of psychostimulants. To test this hypothesis, we examined the degree to which AMPH (10 nmol, 25 nmol) acts within the LHA to exert arousing, locomotor-activating and reinforcing actions in quietly resting/sleeping rats. Although intra-LHA AMPH robustly increased time spent awake, this occurred in the absence of pronounced locomotor activation or reinforcing actions, as measured in a conditioned place preference (CPP) paradigm. Arousing and stressful conditions or drug re-exposure can elicit relapse in humans and reinstate drug-seeking in animals. Given the LHA is also implicated in the reinstatement of drug-seeking behaviour, additional studies examined whether AMPH acts within the LHA to reinstate an extinguished CPP produced with systemic AMPH administration. Our results demonstrate that AMPH action within the LHA is sufficient to reinstate drug-seeking behaviour, as measured in this paradigm. Collectively, these observations demonstrate that psychostimulants act within the LHA to elicit affectively neutral arousal and reinstate drug-seeking behaviour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150758 | PMC |
http://dx.doi.org/10.1017/S1461145713000734 | DOI Listing |
Int J Mol Sci
December 2024
Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
Chronic cocaine use triggers inflammatory and oxidative processes in the central nervous system, resulting in impaired microglia. Mesenchymal stem cells, known for their immunomodulatory properties, have shown promise in reducing inflammation and enhancing neuronal survival. The study employed the cocaine self-administration model, focusing on ionized calcium-binding adaptor protein 1 (Iba-1) and cell morphology as markers for microglial impairment and PLX-PAD cells as a treatment for attenuating cocaine craving.
View Article and Find Full Text PDFBehav Pharmacol
February 2025
Department of Neural and Behavioral Sciences.
Opioid use disorder (OUD) is a crisis in the USA. Despite advances with medications for OUD, overdose deaths have continued to rise and are largely driven by fentanyl. We have previously found that male rats readily self-administer fentanyl, with evident individual differences in fentanyl taking, seeking, and reinstatement behaviors.
View Article and Find Full Text PDFInt J Neuropsychopharmacol
December 2024
National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
Background: Understanding drug addiction as a disorder of maladaptive learning, where drug-associated or environmental cues trigger drug cravings and seeking, is crucial for developing effective treatments. Actin polymerization, a biochemical process, plays a crucial role in drug-related memory formation, particularly evident in conditioned place preference paradigms involving drugs like morphine and methamphetamine. However, the role of actin polymerization in the reconsolidation of heroin-associated memories remains understudied.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran; Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!