Background/aims: Robinow syndrome is caused by mutations in Wnt-5a or its receptor Ror2 and can lead to cryptorchidism, though the mechanisms are unclear. Wnt-5a knock-out mice fail to undergo gubernacular swelling, similar to insulin-like hormone 3 (INSl-3) knock-out mice. We aimed to characterise Wnt-5a and Ror2 expression in rat gubernacula to better understand how Wnt-5a signalling affects testicular descent.

Methods: Sprague-Dawley rats (n = 27) were collected with ethics approval (A644) at embryonic days (E) 15, 17, 19 and postnatal day (D) 2. Control and antiandrogen-treated groups were processed for immunohistochemistry for Wnt-5a, Ror2 and β-catenin. Sagittal sections were examined using confocal microscopy.

Results: Wnt-5a and Ror2 were strongly expressed in the gubernacular bulb at E17 controls, their levels declining at E19 and almost absent by D2. Wnt-5a significantly co-localised with the important transcription factor β-catenin at E17. There was no obvious difference in staining with androgen blockade.

Conclusion: Wnt-5a, through Ror2 and β-catenin may play a vital role in regulating the gubernacular swelling reaction downstream of INSL-3. Human mutations in Wnt-5a or Ror2 could prevent early gubernacular growth, as suggested by undescended testes in 70% of patients with Robinow Syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpedsurg.2012.08.038DOI Listing

Publication Analysis

Top Keywords

wnt-5a ror2
20
robinow syndrome
12
wnt-5a
9
signalling testicular
8
mutations wnt-5a
8
knock-out mice
8
gubernacular swelling
8
ror2 β-catenin
8
ror2
6
wnt signalling
4

Similar Publications

Atherosclerosis (AS) is a major cause of cardiovascular diseases that may lead to mortality. This study aimed to evaluate the therapeutic potential of tetrandrine in high cholesterol diet (HCD)-induced atherosclerosis, in rats, via modulation of miR-34a, as well as, Wnt5a/Ror2/ABCA1/NF-κB pathway and to compare its efficacy with atorvastatin. Induction of AS, in male rats, was done via IP administration of vitamin D3 (70 U/Kg for 3 days) together with HCD.

View Article and Find Full Text PDF

Down-regulation of PCBP2 suppresses the invasion and migration of trophoblasts via the WNT5A/ROR2 pathway in preeclampsia†.

Biol Reprod

November 2024

Reproductive Medicine Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China.

Impaired extravillous trophoblast (EVT) invasion and resulted poor placentation play a vital role in the development of preeclampsia (PE). However, the underlying mechanisms of dysregulated EVTs remain unclear. This study aimed to explore the role of poly (C)-binding protein 2 (PCBP2), a multifunctional RNA-binding protein, in the pathogenesis of PE and to investigate the detailed signaling pathway.

View Article and Find Full Text PDF

Wnt-5a-Receptor Tyrosine Kinase-Like Orphan Receptor 2 Signaling Provokes Metastatic Colonization and Angiogenesis in Renal Cell Carcinoma, and Prunetin Supresses the Axis Activation.

Am J Pathol

October 2024

Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan. Electronic address:

Wnt-5a is a protein encoded by the WNT5A gene and is a ligand for the receptor tyrosine kinase-like orphan receptor 2 (ROR2). However, its biological impact on clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, the prognostic significance of concurrent WNT5A and ROR2 expression levels was observed to predict unfavorable overall survival and disease-specific survival.

View Article and Find Full Text PDF

The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception.

View Article and Find Full Text PDF

Role of the Ror family receptors in Wnt5a signaling.

In Vitro Cell Dev Biol Anim

May 2024

Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-Oka, Fukushima, 960-1295, Japan.

Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the β-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!